[1] 皮昕.口腔生理解剖学[M].北京:人民卫生出版社,2007:285. [2] 苏俭生,韩雯斐,延莉,等.年轻小鼠咀嚼刺激长期改变对焦虑和认知的影响[J].生物化学与生物物理进展,2011,38(7):615-625. [3] Slavicek R, Sato S. Bruxism-a function of the masticatory organ to cope with stress [J]. Wien Med Wochenschr, 2004, 154(23-24):584-589. [4] Roohafza H, Afshar H, Keshteli AH, et al. Masticatory ability with depression, anxiety, and stress: Does there exist any association[J]. Dent Res J (Isfahan), 2016, 13(3):211-216. [5] Nishigawa K, Suzuki Y, Matsuka Y. Masticatory performance alters stress relief effect of gum chewing [J]. J Prosthodont Res, 2015, 59(4):262-267. [6] Hori N, Lee MC, Sasaguri K, et al. Suppression of stress-induced nNOS expression in the rat hypothalamus by biting [J]. J Dent Res, 2016, 84(7):624-628. [7] 张红,骆小平,黄丽娟,等.低频重复经颅磁刺激治疗夜磨牙症的初步研究[J].口腔医学研究, 2019, 35(6):591-594. [8] Sasaguri K, Yamada K, Yamamoto T. Uncovering the neural circuitry involved in the stress-attenuation effects of chewing [J]. J Dent Sci, 2018, 54(3):118-126. [9] Olsen M, Sarup A, Larsson OM, et al. Effect of hyperosmotic conditions on the expression of the betaine-GABA transporter(BGT-1) in cultured mouse astrocytes [J]. Neurochem Res, 2005, 6-7(30):855-865. [10] Cancela LM, Volosin M, Molina VA. Chronic stress attenuation of 2-adrenoceptor reactivity is reversed by naltrexone [J]. Pharmacol Biochem Be, 1988, 31(1):33-35. [11] Martijena ID, Rodriguez MP, Lacerra C, et al. Gabaergic modulation of the stress response in frontal cortex and amygdala [J]. Synapse, 2002, 45(2):86-94. [12] Hori N, Yuyama N, Tamura K. Biting suppresses stress-induced expression of corticotropin-releasing factor (CRF) in the rat hypothalamus [J]. J Dent Res, 2016, 83(2):124-128. [13] Sato C, Sato S, Takashina H, et al. Bruxism affects stress responses in stressed rats [J]. Clin Oral Invest, 2010, 14(2):153-160. [14] Yoshida A, Dostrovsky JO, Sessle BJ, et al. Trigeminal projections to the nucleus submedius of the thalamus in the rat [J]. J Comp Neurol, 1991, 307(4):609-625. [15] Steindler DA. Trigeminocerebellar, trigeminotectal, and trigeminothalamic projections: A double retrograde axonal tracing study in the mouse [J]. J Comp Neurol, 1985, 237(2):155-175. [16] Tanaka T, Yokoo H, Mizoguchi K, et al. Noradrenaline release in the rat amygdala is increased by stress: Studies with intracerebral microdialysis [J]. Brain Res, 1991, 544(1):174-176. [17] 付娟,王书平,李磊.杏仁核的功能研究进展[J].滨州学院学报,2009,25(6):61-63. [18] Ono Y, Lin H, Tzen K, et al. Active coping with stress suppresses glucose metabolism in the rat hypothalamus [J]. Stress (Amsterdam, Netherlands), 2011, 15(2):207-217. [19] Sasaguri K, Kikuchi M, Hori N, et al. Suppression of stress immobilization-induced phosphorylation of ERK 1/2 by biting in the rat hypothalamic paraventricular nucleus [J]. Neuro Lett, 2005, 383(1-2):160-164. [20] Onuki M, Yamamoto T, Sasaguri K, et al. Chewing ameliorates the effects of restraint stress on pERK-immunoreactive neurons in the rat insular cortex [J]. Neurosci Lett, 2018, 674:60-65. [21] Herman JP, Mueller NK, Figueiredo H. Role of GABA and glutamate circuitry inhypothalamo-pituitary-adrenocortical stress integration [J]. Ann Ny Acad Sci, 2004, 1018(1):35-45. [22] Melón LC, Maguire J. GABAergic regulation of the HPA and HPG axes and the impact ofstress on reproductive function [J]. J Steroid Biochem, 2015, 160(6):196-203. [23] Waagepetersen HS, Sonnewald U, Schousboe A. Compartmentation of glutamine, glutamate, and GABA metabolism in neurons and astrocytes: functional implications [J]. Neuroscient, 2016, 9(5):398-403. [24] Sarup A, Miller O, Schousboe A. GABA transporters and GABA-transaminase as drug targrts [J]. Curr Drug Targets CNS Neurol Disord, 2003, 2(4):269-277. [25] Ma K, Xu A, Cui S, et al. Impaired GABA synthesis, uptake and release are associated with depression-like behaviors induced by chronic mild stress [J]. Transl Psychiat, 2016, 10(6):e910. [26] Siucinska E, Hamed A, Jasinska M. Increases in the numerical density of GAT-1 positive puncta in the barrel cortex of adult mice after fear conditioning [J]. PLoS One,2014,9(10):e110493. |