口腔医学研究 ›› 2025, Vol. 41 ›› Issue (4): 320-326.DOI: 10.13701/j.cnki.kqyxyj.2025.04.009

• 口腔正畸学研究 • 上一篇    下一篇

不同情况下Bite Turbos对上颌中切牙作用的三维有限元分析

王玉琛1, 林新平1,2*, 邹明媛2, 弓国梁2, 余飞2   

  1. 1.浙江中医药大学口腔医学院 浙江 杭州 310000;
    2.杭州牙博艺口腔门诊部 浙江 杭州 310000
  • 收稿日期:2024-10-21 发布日期:2025-04-24
  • 通讯作者: * 林新平,E-mail:xplinzju@163.com
  • 作者简介:王玉琛(1997~ ),男,杭州人,硕士在读,研究方向:口腔正畸学。

Three-dimensional Finite Element Analysis on Effect of Bite Turbos on Maxillary Central Incisor under Different Conditions

WANG Yuchen1, LIN Xinping1,2*, ZOU Mingyuan2, GONG Guoliang2, YU Fei2   

  1. 1. School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310000, China;
    2. Hangzhou Yaboyi Oral Clinic, Hangzhou 310000, China
  • Received:2024-10-21 Published:2025-04-24

摘要: 目的: 通过分析不同情况下咬合垫(Bite Turbos)在打开前牙咬合时上颌中切牙的移动变化来探究影响上颌中切牙唇倾度的相关因素。方法: 利用Minics、Geomagic Wrap 2017、SolidWork等软件进行模型的制作,用Workbench对模型设置运行条件,计算出上颌中切牙的位移距离及方向。结果: 作用位点Bite Turbos咬合面后1/3各组模型上中切牙均表现为舌倾改变,Turbos咬合面前1/3各组上中切牙均为唇倾改变;较标准唇倾度中切牙组,唇倾组中模型D1、E1、F1上中切牙更多舌倾变化,其余6组更多唇倾变化,舌倾组中G3、H3、I3表现为更少唇倾变化,其余6组多数表现更多舌倾;Turbos咬合面唇向倾斜,较水平组而言,各组模型上中切牙均表现更舌倾,而咬合面舌向倾斜所有模型表现均更唇倾;垂直向各组模型上中切牙整体表现为压低,除H1上中切牙切缘少量伸长(0.002 mm)外,其余各组切缘及根尖均压低表现。结论: Bite Turbos打开咬合时,上颌中切牙唇倾度的变化与其自身的唇倾度、Bite Turbos咬合面倾斜度及其咬合接触点密切相关。咬合力的作用力线及阻抗中心位置的关系影响上颌中切牙的唇倾度变化。

关键词: 三维有限元, Bite Turbos, 生物力学机制, 深覆牙合, 上颌中切牙唇倾度

Abstract: Objective: To explore the related factors affecting the labial inclination of maxillary central incisor, by analyzing the changes of maxillary central incisor movement during opening of anterior teeth bite with Bite Turbos under different conditions. Methods: Softwares such as Minics, Geomagic Wrap 2017, and SolidWorks were utilized for model fabrication. Workbench was employed to set the operating conditions for the models and calculate the displacement distance and direction of the maxillary central incisors. Results: In each group of models with the posterior 1/3 of the Bite Turbos occlusal surface, the upper central incisors all showed lingual displacement of the crown and labial displacement of the root. In each group with the anterior 1/3 of the Bite Turbos occlusal surface, the upper central incisors all presented labial displacement of the crown and lingual displacement of the root. Compared to the group with the standard labial inclination of the upper central incisors, in the labial inclination group, models D1, E1, and F1 exhibited more lingual inclination changes in the upper central incisors (The crown root displacement difference was more than 0.064 to 0.134 mm in the sagittal plane), while the remaining six groups displayed more labial inclination changes (0.0403-0.238) mm. In the lingual inclination group, G3, H3, and I3 demonstrated fewer labial inclination changes (0.098-0.193) mm, and the majority of the remaining six groups showed more lingual inclination (0.028-0.134) mm. When the Bite Turbos occlusal surface was inclined labially, compared to the horizontal group, all models presented more lingual inclination of the upper central incisors (0.001-0.068) mm. While when the occlusal surface was inclined lingually, all models demonstrated more labial inclination (0.009-0.171) mm. In the vertical direction, the central incisors of all groups in the models exhibited overall depression. Except for a small elongation (0.002 mm) of the incisal edge of the central incisor in group H1, the incisal edges and apical tips of the remaining groups all demonstrated depressed manifestations. Conclusion: When Bite Turbos are employed to open the bite, the variations in the labial inclination of the maxillary central incisors are closely associated with their own labial inclination, the inclination of the Bite Turbos occlusal surface, and the occlusal contact points. The relationship between the force line of the bite force and the position of the center of resistance influences the labial inclination changes of the maxillary central incisors.

Key words: three dimensional-finite element, bite turbos, biomechanical mechanism, deep overbite, maxillary central incisor lip inclination