[1] Bugg TD, Braddick D, Dowson CG, et al. Bacterial cell wall assembly: still an attractive antibacterial target[J]. Trends Biotechnol, 2011, 29(4): 167-173. [2] Ooi N, Miller K, Randall C, et al. XF-70 and XF-73, novel antibacterial agents active against slow-growing and non-dividing cultures of Staphylococcus aureus including biofilms[J]. J Antimicrob Chemother, 2010, 65(1): 72-78. [3] Ooi N, Miller K, Rhys-Williams W, et al. Comparison of bacterial membrane active novel porphyrin and metalloporphyrin antimicrobials[J].Clin Microbiol Infect, 2009, 15: S287-S288. [4] Ooi N, Miller K, Hobbs J, et al. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity[J]. J Antimicrob Chemother, 2009, 64: 735-740. [5] Cherpinski A, Torres-Giner S, Cabedo L, et al. Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber-based food packaging applications[J]. J Appl Polym Sci, 2018, 135(24): 45501. [6] 朱艺丹, 何苗苗, 刘加涛, 等. 载 PTH-Fc/PLCL/SF 静电纺丝屏障膜的构建与性能研究[J]. 口腔医学研究, 2018, 34(8): 913-918. [7] Seema A,Andreas G,Joachim HW. Functional materials by electrospinning of polymers[J]. Prog Polym Sci, 2013, 38: 963-991. [8] Demirci S, Celebioglu A, Aytac Z, et al. pH-responsive nanofibers with controlled drug release properties[J]. Polym Chem, 2014, 5(6): 2050-2056. [9] Park JH, Lee JK, Um HS, et al. A periodontitis-associated multispecies model of an oral biofilm[J]. J Periodontal Implant, 2014, 44(2): 79-84. [10] Yu J, Zhang W, Li Y, et al. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial[J]. Biomed Mater, 2014, 10(1): 015001. [11] Eshed M, Lellouche J, Matalon S, et al. Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model[J]. Langmuir, 2012, 28(33): 12288-12295. [12] Hua D, Liu Z, Wang F, et al. pH responsive polyurethane (core) and cellulose acetate phthalate (shell) electrospun fibers for intravaginal drug delivery[J]. Carbohyd Polym, 2016, 151: 1240-1244. [13] Kim K, Luu YK, Chang C, et al. Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds[J]. J Control Release, 2004, 98(1): 47-56. [14] Siepmann F, Siepmann J, Walther M, et al. Polymer blends for controlled release coatings[J]. J Control Release, 2008, 125(1): 1-15. [15] Zhang N, Wardwell PR, Bader RA. Polysaccharide-based micelles for drug delivery[J]. Pharmaceutics, 2013, 5(2): 329-352. [16] Xiong XB, Falamarzian A, Garg SM, et al. Engineering of amphiphilic block copolymers for polymeric micellar drug and gene delivery[J]. J Control Release, 2011, 155(2): 248-261. [17] 黄山, 刘红. 纳米纤维支架在骨组织工程中的应用[J]. 口腔医学研究, 2018, 34(8): 809-811. [18] Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications[J]. Polymer, 2008, 49(26): 5603-5621. [19] Xie J, Li X, Xia Y. Putting electrospun nanofibers to work for biomedical research[J]. Macromol Rapid Comm, 2008, 29(22): 1775-1792. |