[1] Igarashi Y, Yoshida S, Kanazawa E. The prevalence and morphological types of non-carious cervical lesions (NCCL) in a contemporary sample of people [J]. Odontology, 2017, 105(4):443-452. [2] 梁景平.非龋性颈部缺损的研究进展[J].中华口腔医学杂志,2020,5(55):323-328. [3] Sugita I, Nakashima S, Ikeda A, et al. A pilot study to assess the morphology and progression of non-carious cervical lesions [J]. J Dent, 2017, 57:51-56. [4] 李冰,邓菁菁,刘斐,等.有限元法分析不同粘结剂厚度对全瓷冠应力分布的影响[J].临床口腔医学杂志,2014,2(30):81-83. [5] Guimaraes JC, Guimaraes Soella G, Brandao Durand L, et al. Stress amplifications in dental non-carious cervical lesions [J]. J Biomech,2014,47(2):410-416. [6] Munari LS, Cornacchia TPM, Moreira AN, et al. Stress distribution in a premolar 3D model with anisotropic and isotropic enamel [J]. Med Biol Eng Comput, 2015, 53(8):751-758. [7] 张杨,王超,张晓南,等.动态载荷下不同骨质对天然牙-种植体联合修复应力分布的影响[J].华西口腔医学杂志,2015,33(3):286-290. [8] 李晓宇,左雯鑫,朱啸,等.连续动态加载下单种植体周围骨组织应力的三维有限元分析[J].实用口腔医学杂志,2011,27(1):26-29. [9] Zhu J, Luo D, Rong Q, et al. Effect of biomimetic material on stress distribution in mandibular molars restored with inlays: a three-dimensional finite element analysis [J]. Peer J, 2019, 7:e7694. [10] Monteiro JB, Riquieri H, Prochnow C, et al. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness [J]. Dent Mater, 2018, 34(6):891-900. [11] Kumagai H, Suzuki T, Hamada T, et al. Occlusal force distribution on the dental arch during various levels of clenching [J]. J Oral Rehabil, 1999, 26(12):932-935. [12] Soares PV, Santos-Filho PC, Soares CJ, et al.Non-carious cervical lesions: influence of morphology and load type on biomechanical behaviour of maxillary incisors [J]. Aust Dent J, 2013, 58(3):306-314. [13] Singh JR, Kambalyal P, Jain M, et al. Revolution in orthodontics: finite element analysis [J]. J Int Soc Prev Community Dent,2016,6(2): 110-114. [14] Chen L, Guo X, Li Y, et al. Finite element analysis for interfacial stress and fatigue behaviors of biomimetic titanium implant under static and dynamic loading conditions [J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2010, 35(7):662-672. [15] 魏振辉,孙贺婷,高志银,等.不同材料高嵌体修复大面积缺损的上颌第一前磨牙有限元分析[J].口腔医学研究,2020,36(11):1065-1068. [16] 张珑,李芳萍,杨柏松,等.不同材料嵌体修复邻牙合(Ⅱ类) 洞型的应力影响分析[J].实用口腔医学杂志,2015,31(5):627-632. [17] Guler MS, Guler C, Cakici F, et al. Finite element analysis of thermal stress distribution in different restorative materials used in class V cavities [J]. Niger J Clin Pract, 2016, 19(1):30-34. [18] Soares PV, Machado AC, Zeola LF, et al. Loading and composite restoration assessment of various non-carious cervical lesions morphologies-3D finite element analysis [J]. Aust Dent J, 2015, 60(3):309-316. [19] Ling Z, Liyuan Y, Cuiling L, et al. Three-dimensional finite element analyses of the deep wedge-shaped defective premolars restored with different methods [J]. Hua Xi Kou Qiang Yi Xue Za Zhi, 2017, 35(1):77-81. [20] Caneppele TMF, Meirelles LCF, Rocha RS, et al. A 2-year clinical evaluation of direct and semi-direct resin composite restorations in non-carious cervical lesions: a randomized clinical study [J]. Clin Oral Investig, 2020, 24(3):1321-1331. [21] Fahl N Jr. Direct-indirect class V restorations: a novel approach for treating noncarious cervical lesions [J]. J Esthet Restor Dent, 2015, 27(5):267-284. [22] 李劲,吴静.改良树脂嵌体在楔状缺损中的治疗体会[J].中华老年口腔医学杂志,2017,15(1):11-13. |