[1] Messadi DV. Diagnostic aids for detection of oral precancerous conditions[J]. Int J Oral Sci, 2013, 5(2):59-65. [2] Tatehara S, Satomura K. Non-invasive diagnostic system based on light for detecting early-stage oral cancer and high-risk precancerous lesions-potential for dentistry[J]. Cancers (Basel), 2020, 12(11):3185. [3] 李晨曦,施琳俊,唐国瑶.无创筛查技术早期诊断口腔潜在恶性病患癌变的研究进展[J].临床口腔医学杂志,2017,33(6):381-383. [4] Fujimoto JG, Bouma B, Tearney GJ, et al. New technology for high-speed and high-resolution optical coherence tomography[J]. Ann N Y Acad Sci, 1998, 838:95-107. [5] Leitgeb R, Hitzenberger CK, Fercher AF. Performance of fourier domain vs. time domain optical coherence tomography[J]. Opt Express, 2003, 11(8):889-894. [6] Gabriele ML, Wollstein G, Ishikawa H, et al. Optical coherence tomography: history, current status, and laboratory work[J]. Invest Ophthalmol Vis Sci, 2011, 52(5):2425-2436. [7] Suter MJ, Nadkarni SK, Weisz G, et al. Intravascular optical imaging technology for investigating the coronary artery[J]. JACC Cardiovasc Imaging, 2011, 4(9):1022-1039. [8] Johnson TW, Raber L, di Mario C, et al. Clinical use of intracoronary imaging. Part 2: acute coronary syndromes, ambiguous coronary angiography findings, and guiding interventional decision-making: an expert consensus document of the European Association of Percutaneous Cardiovascular Interventions[J]. Eur Heart J, 2019, 40(31):2566-2584. [9] Leitgeb RA. En face optical coherence tomography: a technology review[Invited][J]. Biomed Opt Express, 2019, 10(5):2177-2201. [10] Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography[J]. Science, 1991, 254(5035):1178-1181. [11] 苏翼雄,徐可欣,邱庆军,等.生物组织后向散射光信号非接触拾取方法的研究[J].仪器仪表学报,2003,24(z1):127-130. [12] Wei W, Choi WJ, Wang RK. Microvascular imaging and monitoring of human oral cavity lesions in vivo by swept-source OCT-based angiography[J]. Lasers Med Sci, 2018, 33(1):123-134. [13] de Boer JF, Leitge R, Wojtkowski M. Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT[Invited][J]. Biomed Opt Express, 2017, 8(7):3248-3280. [14] Qin Y, Soundararajan R, Jia R, et al. Direct inverse linearization of piezoelectric actuator’s initial loading curve and its applications in full-field optical coherence tomography (FF-OCT)[J]. Mech Syst Signal Process, 2021, 148:107147. [15] Walther J, Li Q, Villiger M, et al. Depth-resolved birefringence imaging of collagen fiber organization in the human oral mucosa in vivo[J]. Biomed Opt Express, 2019, 10(4):1942-1956. [16] Stifter D. Beyond biomedicine: a review of alternative applications and developments for optical coherence tomography[J]. Applied Physics B, 2007, 88(3):337-357. [17] Machoy M, Seeliger J, Szyszka-Sommerfeld L, et al. The use of optical coherence tomography in dental diagnostics: A state-of-the-art review[J]. J Healthc Eng, 2017, 2017:7560645. [18] Kiritoshi S, Oie Y, Nampei K, et al. Anterior segment optical coherence tomography angiography in patients following cultivated oral mucosal epithelial transplantation[J]. Am J Ophthalmol, 2019, 208:242-250. [19] Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography[J]. Prog Retin Eye Res, 2018, 64:1-55. [20] Chen P, Chen Y, Chen Y, et al. Quantification of structural and microvascular changes for diagnosing early-stage oral cancer[J]. Biomed Opt Express, 2020, 11(3):1244-1256. [21] van Manen L, Dijkstra J, Boccara C, et al. The clinical usefulness of optical coherence tomography during cancer interventions[J]. J Cancer Res Clin Oncol, 2018, 144(10):1967-1990. [22] 陈晨,章文欣,戚苈源,等.光学相干断层扫描技术诊断牙根裂的实验研究[J].北京大学学报(医学版),2018,50(3):547-552. [23] 戚苈源,陈晨,姜岚,等.扫频光学相干断层扫描根管内窥影像系统的建立及其在根裂诊断的应用[J].北京大学学报(医学版),2019,51(4):753-757. [24] Colston Jr BW, Everett MJ, Da Silva LB, et al. Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography[J]. Appl Opt, 1998, 37(16):3582-3585. [25] Wilder-Smith P, Hammer-Wilson MJ, Zhang J, et al. In vivo imaging of oral mucositis in an animal model using optical coherence tomography and optical Doppler tomography[J]. Clin Cancer Res, 2007, 13(8):2449-2454. [26] Maslennikova AV, Sirotkina MA, Moiseev AA, et al. In-vivo longitudinal imaging of microvascular changes in irradiated oral mucosa of radiotherapy cancer patients using optical coherence tomography[J]. Sci Rep, 2017, 7(1):16505. [27] Hessler M, Nelis P, Ertmer C, et al. Optical coherence tomography angiography as a novel approach to contactless evaluation of sublingual microcirculation: A proof of principle study[J]. Sci Rep, 2020, 10(1): 5408. [28] Albrecht M, Schnabel C, Mueller J, et al. In vivo endoscopic optical coherence tomography of the healthy human oral mucosa: Qualitative and quantitative image analysis[J]. Diagnostics (Basel), 2020, 10(10):827. [29] Hamdoon Z, Jerjes W, Al-Delayme R, et al. Structural validation of oral mucosal tissue using optical coherence tomography[J]. Head Neck Oncol, 2012, 4:29. [30] Gambino A, Cabras M, Cafaro A, et al. In-vivo usefulness of optical coherence tomography in atrophic-erosive oral lichen planus: Comparison between histopathological and ultrastructural findings[J]. J Photochem Photobiol B, 2020, 211: 112009. [31] Tsai MT, Chen Y, Lee CY, et al. Noninvasive structural and microvascular anatomy of oral mucosae using handheld optical coherence tomography[J]. Biomed Opt Express, 2017, 8: 5001-5012. [32] Grulkowski I, Nowak JK, Karnowski K, et al. Quantitative assessment of oral mucosa and labial minor salivary glands in patients with Sjögren's syndrome using swept source OCT[J]. Biomed Opt Express, 2013, 5(1): 259-274. [33] Kawakami-Wong H, Gu S, Hammer-Wilson MJ, et al. In vivo optical coherence tomography-based scoring of oral mucositis in human subjects: a pilot study[J]. J Biomed Opt, 2007, 12(5):051702. [34] Calantog A, Hallajian L, Nabelsi T, et al. A prospective study to assess in vivo optical coherence tomography imaging for early detection of chemotherapy-induced oral mucositis[J]. Lasers Surg Med, 2013, 45(1):22-27. [35] Di Stasio D, Lauritano D, Loffredo F, et al. Optical coherence tomography imaging of oral mucosa bullous diseases: a preliminary study[J]. Dentomaxillofac Radiol, 2020, 49(2): 20190071. [36] Ianosi SL, Forsea AM, Lupu M, et al. Role of modern imaging techniques for the in vivo diagnosis of lichen planus[J]. Exp Ther Med, 2019, 17(2): 1052-1060. [37] Gambino A, Cabras M, Cafaro A, et al. Preliminary evaluation of the utility of optical coherence tomography in detecting structural changes during photobiomodulation treatment in patients with atrophic-erosive oral lichen planus[J]. Photodiagnosis Photodyn Ther, 2021,34: 102255. [38] Obade AY, Pandarathodiyil AK, Oo AL, et al. Application of optical coherence tomography to study the structural features of oral mucosa in biopsy tissues of oral dysplasia and carcinomas[J]. Clin Oral Investig, 2021, 25(9):5411-5419. [39] Jerjes W, Hamdoon Z, Yousif AA, et al. Epithelial tissue thickness improves optical coherence tomography's ability in detecting oral cancer[J]. Photodiagnosis Photodyn Ther, 2019, 28: 69-74. [40] Hamdoon Z, Jerjes W, McKenzie G, et al. Optical coherence tomography in the assessment of oral squamous cell carcinoma resection margins[J]. Photodiagnosis Photodyn Ther, 2016, 13: 211-217. [41] Lee AM, Cahill L, Liu K, et al. Wide-field in vivo oral OCT imaging[J]. Biomed Opt Express, 2015, 6(7): 2664-2674. [42] de Oliveira Dias JR, Zhang Q, Garcia JMB, et al. Natural history of subclinical neovascularization in nonexudative age-related macular degeneration using swept-source OCT angiography[J]. Ophthalmology, 2018, 125(2): 255-266. [43] Li K, Yang Z, Liang W, et al. Low-cost, ultracompact handheld optical coherence tomography probe for in vivo oral maxillofacial tissue imaging[J]. J Biomed Opt, 2020, 25(4): 1-13. |