[1] Zhang L, Wei W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony [J]. Pharmacol Ther, 2020, 207:107452. [2] Xiang Y, Zhang Q, Wei S, et al. Paeoniflorin: a monoterpene glycoside from plants of Paeoniaceae family with diverse anticancer activities [J]. J Pharm Pharmacol, 2020, 72(4):483-495. [3] Xin Q, Yuan R, Shi W, et al. A review for the anti-inflammatory effects of paeoniflorin in inflammatory disorders [J]. Life Sci, 2019, 237:116925. [4] Wang XZ, Xia L, Zhang XY, et al. The multifaceted mechanisms of Paeoniflorin in the treatment of tumors: State-of-the-Art [J]. Biomed Pharmacother, 2022, 149:112800. [5] Gan Y, Cui X, Ma T, et al. Paeoniflorin upregulates β-defensin-2 expression in human bronchial epithelial cell through the p38 MAPK, ERK, and NF-κB signaling pathways [J]. Inflammation, 2014, 37(5):1468-1475. [6] Wu XX, Huang XL, Chen RR, et al. Paeoniflorin prevents intestinal barrier disruption and inhibits lipopolysaccharide (LPS)-induced inflammation in caco-2 cell monolayers [J]. Inflammation, 2019, 42(6):2215-2225. [7] Fan Q, Guan X, Hou Y, et al. Paeoniflorin modulates gut microbial production of indole-3-lactate and epithelial autophagy to alleviate colitis in mice [J]. Phytomedicine, 2020, 79:153345. [8] Luo X, Wang X, Huang S, et al. Paeoniflorin ameliorates experimental colitis by inhibiting gram-positive bacteria-dependent MDP-NOD2 pathway [J]. Int Immunopharmacol, 2021, 90:107224. [9] Zou X, Wang Y, Wang Y, et al. Paeoniflorin alleviates abnormalities in rats with functional dyspepsia by stimulating the release of acetylcholine [J]. Drug Des Devel Ther, 2020, 14:5623-5632. [10] Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements [J]. Nat Methods, 2015, 12(4): 357-360. [11] Pertea M, Pertea GM, Antonescu CM, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads [J]. Nat Biotechnol, 2015, 33(3): 290-295. [12] Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues [J]. F1000Res, 2013, 2:188. [13] Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data [J]. Bioinformatics, 2010, 26(1): 139-140. [14] Swidergall M, Filler SG. Oropharyngeal candidiasis: Fungal invasion and epithelial cell responses [J]. PLoS Pathog, 2017, 13(1): e1006056. [15] Tuszynski J, Tilli TM, Levin M. Ion channel and neurotransmitter modulators as electroceutical approaches to the control of cancer [J]. Curr Pharm Des, 2017, 23(32): 4827-4841. [16] Anderson KJ, Cormier RT, Scott PM. Role of ion channels in gastrointestinal cancer [J]. World J Gastroenterol, 2019, 25(38): 5732-5772. [17] Yu W, Zeng M, Xu P, et al. Effect of paeoniflorin on acute lung injury induced by influenza A virus in mice. Evidences of its mechanism of action [J]. Phytomedicine, 2021, 92: 153724. [18] Haller O, Gao S, von der Malsburg A, et al. Dynamin-like MxA GTPase: structural insights into oligomerization and implications for antiviral activity [J]. J Biol Chem, 2010, 285(37): 28419-28424. [19] Verhelst J, Hulpiau P, Saelens X. Mx proteins: antiviral gatekeepers that restrain the uninvited [J]. Microbiol Mol Biol Rev, 2013, 77(4): 551-566. [20] Bradley KC, Finsterbusch K, Schnepf D, et al. Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection [J]. Cell Rep, 2019, 28(1): 245-256.e4. [21] Di Pietro A, Kajaste-Rudnitski A, Oteiza A, et al. TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation [J]. J Virol, 2013, 87(8): 4523-4533. [22] Reddi TS, Merkl PE, Lim SY, et al. Tripartite Motif 22 (TRIM22) protein restricts herpes simplex virus 1 by epigenetic silencing of viral immediate-early genes [J]. PLoS Pathog, 2021, 17(2): e1009281. [23] Sparrer KM, Gack MU. Intracellular detection of viral nucleic acids [J]. Curr Opin Microbiol, 2015, 26: 1-9. [24] Zhang JW, Li LX, Wu WZ, et al. Anti-tumor effects of paeoniflorin on epithelial-to-mesenchymal transition in human colorectal cancer cells [J]. Med Sci Monit, 2018, 24: 6405-6413. [25] Wang Z, Yu G, Liu Z, et al. Paeoniflorin inhibits glioblastoma growth in vivo and in vitro: a role for the Triad3A-dependent ubiquitin proteasome pathway in TLR4 degradation [J]. Cancer Manag Res, 2018, 10: 887-897. [26] Zhou J, Yu Q, Chng WJ. TXNIP (VDUP-1, TBP-2): a major redox regulator commonly suppressed in cancer by epigenetic mechanisms [J]. Int J Biochem Cell Biol, 2011, 43(12): 1668-1673. [27] Masutani H, Yoshihara E, Masaki S, et al. Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus [J]. J Clin Biochem Nutr, 2012, 50(1): 23-34. [28] Saxena G, Chen J, Shalev A. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein [J]. J Biol Chem, 2010, 285(6): 3997-4005. [29] Lu J, Holmgren A. Thioredoxin system in cell death progression [J]. Antioxid Redox Signal, 2012, 17(12): 1738-1747. [30] Han SH, Jeon JH, Ju HR, et al. VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression [J]. Oncogene, 2003, 22(26): 4035-4046. [31] Park JW, Lee SH, Woo GH, et al. Downregulation of TXNIP leads to high proliferative activity and estrogen-dependent cell growth in breast cancer [J]. Biochem Biophys Res Commun, 2018, 498(3): 566-572. [32] Arakaki AKS, Pan WA, Lin H, et al. The α-arrestin ARRDC3 suppresses breast carcinoma invasion by regulating G protein-coupled receptor lysosomal sorting and signaling [J]. J Biol Chem, 2018, 293(9): 3350-3362. [33] Arakaki AKS, Pan WA, Wedegaertner H, et al. α-Arrestin ARRDC3 tumor suppressor function is linked to GPCR-induced TAZ activation and breast cancer metastasis [J]. J Cell Sci, 2021, 134(8):jcs254888. [34] Draheim KM, Chen HB, Tao Q, et al. ARRDC3 suppresses breast cancer progression by negatively regulating integrin beta4 [J]. Oncogene, 2010, 29(36): 5032-5047. [35] Choi YS, Sinha S. Determination of the consensus DNA-binding sequence and a transcriptional activation domain for ESE-2 [J]. Biochem J, 2006, 398(3): 497-507. [36] Lo YH, Noah TK, Chen MS, et al. SPDEF induces quiescence of colorectal cancer cells by changing the transcriptional targets of β-catenin [J]. Gastroenterology, 2017, 153(1): 205-218.e8. [37] Cheng XH, Black M, Ustiyan V, et al. SPDEF inhibits prostate carcinogenesis by disrupting a positive feedback loop in regulation of the Foxm1 oncogene [J]. PLoS Genet, 2014, 10(9): e1004656. [38] Chattopadhyay I, Verma M, Panda M. Role of oral microbiome signatures in diagnosis and prognosis of oral cancer [J]. Technol Cancer Res Treat, 2019, 18: 1533033819867354. [39] Augoff K, Hryniewicz-Jankowska A, Tabola R, et al. Upregulated expression and activation of membrane-associated proteases in esophageal squamous cell carcinoma [J]. Oncol Rep, 2014, 31(6): 2820-2826. [40] Martins LM, de Melo Escorcio Dourado CS, Campos-Verdes LM, et al. Expression of matrix metalloproteinase 2 and 9 in breast cancer and breast fibroadenoma: a randomized, double-blind study [J]. Oncotarget, 2019, 10(64): 6879-6884. [41] Jiang H, Li H. Prognostic values of tumoral MMP2 and MMP9 overexpression in breast cancer: a systematic review and meta-analysis [J]. BMC Cancer, 2021, 21(1): 149. [42] Shao W, Wang W, Xiong XG, et al. Prognostic impact of MMP-2 and MMP-9 expression in pathologic stage IA non-small cell lung cancer [J]. J Surg Oncol, 2011, 104(7): 841-846. [43] Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression [J]. Trends Mol Med, 2014, 20(6): 332-342. [44] Brayman M, Thathiah A, Carson DD. MUC1: a multifunctional cell surface component of reproductive tissue epithelia [J]. Reprod Biol Endocrinol, 2004, 2: 4. [45] Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins [J]. Annu Rev Physiol, 2008, 70: 431-457. [46] Jiang J, Dong C, Zhai L, et al. Paeoniflorin suppresses TBHP-induced oxidative stress and apoptosis in human umbilical vein endothelial cells via the Nrf2/HO-1 signaling pathway and improves skin flap survival [J]. Front Pharmacol, 2021, 12: 735530. [47] Zhou YX, Gong XH, Zhang H, et al. A review on the pharmacokinetics of paeoniflorin and its anti-inflammatory and immunomodulatory effects [J]. Biomed Pharmacother, 2020, 130: 110505. [48] Puar YR, Shanmugam MK, Fan L, et al. Evidence for the involvement of the master transcription factor NF-κB in cancer initiation and progression [J]. Biomedicines, 2018, 6(3):82. |