口腔医学研究 ›› 2023, Vol. 39 ›› Issue (11): 960-964.DOI: 10.13701/j.cnki.kqyxyj.2023.11.004

• 综述 • 上一篇    下一篇

卷积神经网络在牙体牙髓病影像诊断中的研究和应用

齐帅, 张旗*   

  1. 同济大学口腔医学院同济大学附属口腔医院牙体牙髓病科上海牙组织修复与再生工程技术中心 上海 200011
  • 收稿日期:2023-06-19 出版日期:2023-11-28 发布日期:2023-11-22
  • 通讯作者: *张旗,E-mail:qizhang@tongji.edu.cn
  • 作者简介:齐帅(1992~ ),男,辽宁人,博士,主要从事牙体牙髓病学的临床和科研工作。
  • 基金资助:
    国家自然科学基金(编号:82170945)上海申康医院发展中心临床三年行动计划——临床“五新”创新研发项目(编号:SHDC2020CR3058B)

Research and Application of Convolutional Neural Network in Endodontic Imaging Diagnosis

QI Shuai, ZHANG Qi*   

  1. Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200011, China
  • Received:2023-06-19 Online:2023-11-28 Published:2023-11-22

摘要: 随着计算机技术的发展,人工智能在口腔医学影像诊断中的研究和应用发展迅速,牙体牙髓病作为最常见的一类口腔疾病是其中最早开展人工智能相关研究的领域之一。近年来,以卷积神经网络为代表的深度学习技术在牙体牙髓病影像诊断中展现了良好的应用前景,有望在未来为临床医生提供智能化诊疗支持。本文将基于卷积神经网络的工作原理,重点介绍卷积神经网络在牙体牙髓病影像诊断中的研究和应用情况,并简要分析其发展前景。

关键词: 牙体牙髓病, 影像诊断, 人工智能, 卷积神经网络

Abstract: With the progress of computer technology, the research and application of artificial intelligence (AI) in dental imaging diagnosis has developed rapidly. As the most common dental disease, endodontics becomes one of the earliest AI-related research fields in dentistry. In recent years, deep learning technology represented by convolutional neural network (CNN) has shown great prospects in endodontic imaging diagnosis, and is expected to provide clinicians with intelligent support in the future. At present, the development of CNN in endodontic imaging diagnosis is still in the preliminary stage. This article will focus on the research and application of CNN in endodontic imaging diagnosis based on the working principle of CNN, and briefly analyze its development prospect.

Key words: endodontics, imaging diagnosis, artificial intelligence, convolutional neural network