[1] Hämmerle CH, Araújo MG, Simion M, et al. Evidence-based knowledge on the biology and treatment of extraction sockets [J]. Clin Oral Implants Res, 2012,23 Suppl 5:80-82. [2] Chen Z, Bachhuka A, Wei F, et al. Nanotopography-based strategy for the precise manipulation of osteoimmunomodulation in bone regeneration [J]. Nanoscale, 2017, 9(46):18129-18152. [3] Lauritano D, Limongelli L, Moreo G, et al. Nanomaterials for periodontal tissue engineering: Chitosan-based scaffolds. A systematic review [J]. Nanomaterials (Basel), 2020, 10(4):605. [4] Ye P, Yu B, Deng J, et al. Application of silk fibroin/chitosan/nano-hydroxyapatite composite scaffold in the repair of rabbit radial bone defect [J]. Exp Ther Med, 2017,14(6):5547-5553. [5] Kang M, Huang CC, Lu Y, et al. Bone regeneration is mediated by macrophage extracellular vesicles [J]. Bone, 2020,141:115627. [6] Schlundt C, Fischer H, Bucher CH, et al. The multifaceted roles of macrophages in bone regeneration: A story of polarization, activation and time [J]. Acta Biomater, 2021, 133:46-57. [7] 李静静,王稚英.人牙骨移植材料对小鼠单核巨噬细胞RAW264.7增殖分化的影响[J].中国修复重建外科杂志,2018,32(10):1132-1339. [8] Liu Y, Xu R, Gu H, et al. Metabolic reprogramming in macrophage responses [J]. Biomark Res, 2021, 9(1):1. [9] Ricketts TD, Prieto-Dominguez N, Gowda PS, et al. Mechanisms of macrophage plasticity in the tumor environment: Manipulating activation state to improve outcomes [J]. Front Immunol, 2021, 12:642285. [10] Draghiciu O, Lubbers J, Nijman HW, et al. Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy [J]. Oncoimmunology, 2015, 4(1):e954829. [11] Zhang F, Wang H, Wang X, et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype [J]. Oncotarget, 2016, 7(32):52294-52306. [12] Weivoda MM, Ruan M, Pederson L, et al. Osteoclast TGF-β receptor signaling induces Wnt1 secretion and couples bone resorption to bone formation [J]. J Bone Miner Res, 2016, 31(1):76-85. [13] Hoac B, Nelea V, Jiang W, et al. Mineralization-inhibiting effects of transglutaminase-crosslinked polymeric osteopontin [J]. Bone, 2017, 101:37-48. [14] Chen Y, Yang S, Lovisa S, et al. Type-Ⅰ collagen produced by distinct fibroblast lineages reveals specific function during embryogenesis and Osteogenesis Imperfecta [J]. Nat Commun, 2021, 12(1):7199. [15] Takahata Y, Hagino H, Kimura A, et al. Smoc1 and Smoc2 regulate bone formation as downstream molecules of Runx2 [J]. Commun Biol, 2021, 4(1):1199. [16] Komori T. Roles of Runx2 in skeletal development [J]. Adv Exp Med Biol, 2017, 962:83-93 [17] Bai Y, Zhang Q, Chen Q, et al. Conditional knockout of the PDK-1 gene in osteoblasts affects osteoblast differentiation and bone formation [J]. J Cell Physiol, 2021, 236(7):5432-5445. [18] Crane JL, Xian L, Cao X. Role of TGF-β signaling in coupling bone remodeling [J]. Methods Mol Biol, 2016, 1344:287-300. [19] Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling [J]. J Biol Chem, 2010, 285(33):25103-25108. [20] 苏虹,张熙,李竞,等.麦粒灸对坐骨神经损伤大鼠脊髓组织TLR4/MyD88/NF-κB信号通路表达的影响[J].中国中医药信息杂志,2024,31(1):78-83. [21] Tsukasaki M, Huynh NC, Okamoto K, et al. Stepwise cell fate decision pathways during osteoclastogenesis at single-cell resolution [J]. Nat Metab, 2020, 2(12):1382-1390. |