口腔医学研究 ›› 2021, Vol. 37 ›› Issue (11): 1023-1028.DOI: 10.13701/j.cnki.kqyxyj.2021.11.013

• 颞下颌关节病学研究 • 上一篇    下一篇

基于口内扫描配准的下颌运动模拟的精确性检验与初步应用

陈俊鹏1, 王晶1, 吕列夫2, 王洋1, 毛驰1, 陈克难1, 袁若水1, 许向亮1, 王佃灿1, 郭玉兴1, 苏家增1, 郭传瑸1*   

  1. 1.北京大学口腔医学院·口腔医院口腔颌面外科 国家口腔疾病临床医学研究中心口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室 北京 100081;
    2.北京微思普联科技发展有限公司 北京 100086
  • 收稿日期:2020-06-30 出版日期:2021-11-28 发布日期:2021-11-22
  • 通讯作者: *郭传瑸,E-mail:guodazuo@sina.com
  • 作者简介:陈俊鹏(1996~ ),男,浙江金华人,八年制研究生,研究方向:口腔颌面外科、口腔颌面部肿瘤。
  • 基金资助:
    国家重点研发计划政府间国际科技创新合作重点专项(编号:2017YFE0124500)国家重点研发计划(编号:2019YFB1706900)北京市科技计划(编号:Z201100005520055)

Accuracy Test and Preliminary Application of Mandibular Motion Simulation Based on Intraoral Scanning Registration

CHEN Junpeng1, WANG Jing1, LV Liefu2, WANG Yang1, MAO Chi1, CHEN Kenan1, YUAN Ruoshui1, XU Xiangliang1, WANG Diancan1, GUO Yuxing1, SU Jiazeng1, GUO Chuanbin1*   

  1. 1. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China;
    2. Weisupulian Technology Development Co., Ltd, Beijing 100086, China
  • Received:2020-06-30 Online:2021-11-28 Published:2021-11-22

摘要: 目的: 验证基于口内扫描配准的下颌运动模拟方法的精确性,并在颌骨重建术后患者中进行初步应用。方法: 使用电子面弓记录受试的下颌运动,拍摄CT,并通过口内扫描将运动轨迹和CT配准,进行下颌运动模拟。选用2个不同尺寸的头颅模型,在上下颌分别旋入标记钛钉,模拟大张口、前伸、侧方,记录运动并固定运动末位置,测量上下颌钛钉间的实际距离、CT影像距离、模拟运动后的距离,比较3个距离的差值。纳入12例下颌重建术后患者和5例正常志愿者,应用上述方法模拟下颌边缘运动,并分析比较髁突运动特点。结果: 使用基于口内扫描配准的方法模拟运动后的上下颌钛钉间距离与实测距离的差值为(0.61±0.05) mm,95%置信区间为(0.51,0.71) mm。患者患侧髁突向外侧方动度[(2.70±0.62) mm]大于正常志愿者[(1.23±0.26) mm,P<0.05],健侧髁突向内侧方动度[(2.91±0.63) mm]也大于正常志愿者[(1.59±0.28) mm,P<0.05]。结论: 模型试验证实了基于口内扫描配准的下颌运动模拟的误差较小,该方法可以用于测量和评价下颌骨重建术后髁突运动。

关键词: 虚拟现实, 下颌重建, 下颌髁突, 关节运动

Abstract: Objective: To verify the accuracy of mandibular motion simulation method based on intraoral scanning registration, and apply it in patients after preliminary mandibular reconstruction. Methods: Mandibular movement was recorded by jaw tracking system and the trajectory was registered with CT through oral scanning to simulate the mandibular movement. Titanium screws were screwed into the skull models’ upper and lower jaws respectively. The distances between the titanium screws in the actual condition, through CT image, and through simulation were measured and compared. 12 patients after mandibular reconstruction and 5 normal volunteers were included. Results: The overall error of motion simulation was (0.61±0.05) mm, and the 95% confidence interval was (0.51, 0.71) mm. The outward movement of condyle on the affected side of the patients (2.70±0.62) mm were greater than that of the normal group [(1.23±0.26) mm, P<0.05], and the inward movement of condyle on the healthy side [(2.91±0.63) mm] was also greater than that of the normal group [(1.59±0.28) mm, P<0.05]. Conclusion: The accuracy of the mandibular motion simulation method based on intraoral scanning was verified. It could be used to measure and evaluate the condylar movement after mandibular reconstruction.

Key words: virtual reality, mandibular reconstruction, mandibular condyle, joint range of motion