[1] Okada S, Asano T, Moriya K, et al. Human STAT1 gain-of-function heterozygous mutations: Chronic mucocutaneous candidiasis and type Ⅰ interferonopathy [J]. J Clin Immunol, 2020, 40(8):1065-1081. [2] Cifaldi C, Ursu GM, D'Alba I, et al. Main human inborn errors of immunity leading to fungal infections [J]. Clin Microbiol Infect, 2022, 28(11):1435-1440. [3] Puel A. Human inborn errors of immunity underlying superficial or invasive candidiasis [J]. Hum Genet, 2020, 139(6-7):1011-1022. [4] Frede N, Rojas RJ, Caballero GO, et al. Genetic analysis of a cohort of 275 patients with hyper-IgE syndromes and/or chronic mucocutaneous Candidiasis [J]. J Clin Immunol, 2021, 41(8):1804-1838. [5] Zhang W, Chen X, Gao G, et al. Clinical relevance of gain- and loss-of-function germline mutations in STAT1: A systematic review [J]. Front Immunol, 2021, 12:654406. [6] Chen X, Xu Q, Li X, et al. Molecular and phenotypic characterization of nine patients with STAT1 GOF mutations in China [J]. J Clin Immunol, 2020, 40(1):82-95. [7] Carey B, Lambourne J, Porter S, et al. Chronic mucocutaneous candidiasis due to gain-of-function mutation in STAT1 [J]. Oral Dis, 2019, 25(3):684-692. [8] Lu X, Zhang K, Jiang W, et al. Single-cell RNA sequencing combined with whole exome sequencing reveals the landscape of the immune pathogenic response to chronic mucocutaneous candidiasis with STAT1 GOF mutation [J]. Front Immunol, 2022, 13:988766. [9] Wang X, Zhao W, Chen F, et al. Chinese pedigree of chronic mucocutaneous candidiasis due to STAT1 gain-of-function mutation: A case study and literature review [J]. Mycopathologia, 2023,188(1-2):87-97. [10] Kudou M, Fukai K, Yamaguchi S, et al. Chronic mucocutaneous candidiasis due to STAT1 gene mutation [J]. J Dermatol, 2023, 50(11):379-380. [11] Tangye SG, Puel A. The Th17/IL-17 axis and host defense against fungal infections [J]. J Allergy Clin Immunol Pract, 2023, 11(6):1624-1634. [12] Break TJ, Oikonomou V, Dutzan N, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections [J]. Science, 2021, 371(6526): 5731. [13] Shamriz O, Tal Y, Talmon A, et al. Chronic mucocutaneous candidiasis in early life: Insights into immune mechanisms and novel targeted therapies [J]. Front Immunol, 2020, 11:593289. [14] 史冬梅,刘维达.IL-17相关信号通路分子先天免疫缺陷在慢性黏膜皮肤念珠菌病中的研究及免疫治疗进展[J].中华微生物学和免疫学杂志, 2020, 40(1):74-82. [15] Philippot Q, Ogishi M, Bohlen J, et al. Human IL-23 is essential for IFN-γ-dependent immunity to mycobacteria [J]. Sci Immunol, 2023, 8(80):5204. [16] Vargas-Hernández A, Mace EM, Zimmerman O, et al. Ruxolitinib partially reverses functional natural killer cell deficiency in patients with signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations [J]. J Allergy Clin Immunol, 2018,141(6):2142-2155. [17] Bloomfield M, Zentsova I, Milota T, et al. Immunoprofiling of monocytes in STAT1 gain-of-function chronic mucocutaneous candidiasis [J]. Front Immunol, 2022, 13:983977. [18] Parackova Z, Vrabcova P, Zentsova I, et al. Neutrophils in STAT1 gain-of-function have a pro-inflammatory signature which is not rescued by JAK inhibition [J]. J Clin Immunol, 2023, 43(7):1640-1659. [19] Toubiana J, Okada S, Hiller J, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype [J]. Blood, 2016, 127(25):3154-3164. [20] 韦帝远,闫志敏.光动力疗法在口腔念珠菌病中的应用前景及研究进展[J].口腔医学研究,2020,36(12):1087-1090. |