[1] Global oral health status report: towards universal health coverage for oral health by 2030[R]. Geneva: World Health Organization, 2022. [2] 冯希平.中国居民口腔健康状况——第四次中国口腔健康流行病学调查报告[C]//中华口腔医学会口腔预防医学专业委员会. 2018年中华口腔医学会第十八次口腔预防医学学术年会论文汇编, 2018: 2. [3] Zou J, Du Q, Ge L, et al. Expert consensus on early childhood caries management[J]. Int J Oral Sci, 2022, 14(1): 35. [4] 张静,王雁.中国学龄前儿童龋齿患病率及填充率的Meta分析[J].华西口腔医学杂志,2023,41(5): 573-581. [5] Raksakmanut R, Thanyasrisung P, Sritangsirikul S, et al. Prediction of future caries in 1-year-old children via the salivary microbiome[J]. J Dent Res, 2023, 102(6): 626-635. [6] Blostein F, Bhaumik D, Davis E, et al. Evaluating the ecological hypothesis: early life salivary microbiome assembly predicts dental caries in a longitudinal case-control study[J]. Microbiome, 2022, 10(1): 240. [7] Fernando S, Tadakamadla S, Kroon J, et al. Predicting dental caries increment using salivary biomarkers in a remote Indigenous Australian child population[J]. BMC Oral Health, 2021, 21(1): 372. [8] Ghazal TS, Levy SM, Childers NK, et al. Mutans Streptococci and dental caries: A new statistical modeling approach[J]. Caries Res, 2018, 52(3): 246-252. [9] Dashper SG, Mitchell HL, Lê Cao KA, et al. Temporal development of the oral microbiome and prediction of early childhood caries[J]. Sci Rep, 2019, 9(1): 19732. [10] Shafaie E, Badri Z, Salehiniya H, et al. Comparison the salivary streptococcus mutans levels between caries-active and caries-free children from Birjand, Iran: A case-control study[J]. Heliyon, 2024, 10(3): e25663. [11] Manchanda S, Sardana D, Peng S, et al. Is Mutans Streptococci count a risk predictor of early childhood caries? A systematic review and meta-analysis[J]. BMC Oral Health, 2023, 23(1): 648. [12] Lalloo R, Tadakamadla SK, Kroon J, et al. Salivary characteristics and dental caries experience in remote Indigenous children in Australia: a cross-sectional study[J]. BMC Oral Health, 2019, 19(1): 21. [13] Jiang S, Gao X, Jin L, et al. Salivary microbiome diversity in caries-free and caries-affected children[J]. Int J Mol Sci, 2016, 17(12): 1978. [14] Liu JF, Hsu CL, Chen LR. Correlation between salivary mutans streptococci, lactobacilli and the severity of early childhood caries[J]. J Dent Sci, 2019, 14(4): 389-394. [15] Wu T T, Xiao J, Sohn MB, et al. Machine learning approach identified multi-platform factors for caries prediction in child-mother dyads[J]. Front Cell Infect Microbiol, 2021, 11: 727630. [16] Cvanova M, Ruzicka F, Kukletova M, et al. Candida species and selected behavioral factors co-associated with severe early childhood caries: Case-control study[J]. Front Cell Infect Microbiol, 2022, 12: 943480. [17] Cui Y, Wang Y, Zhang Y, et al. Oral mycobiome differences in various spatial niches with and without severe early childhood caries[J]. Front Pediatr, 2021, 9: 748656. [18] Sridhar S, Suprabha BS, Shenoy R, et al. Association of Streptococcus mutans, Candida Albicans and oral health practices with activity status of caries lesions among 5-year-old children with early childhood caries[J]. Oral Health Prev Dent, 2020, 18(1): 911-919. [19] Wu R, Cui G, Cao Y, et al. Streptococcus mutans membrane vesicles enhance Candida Albicans pathogenicity and carbohydrate metabolism[J]. Front Cell Infect Microbiol, 2022, 12: 940602. [20] Kim HE, Liu Y, Dhall A, et al. Synergism of Streptococcus mutans and Candida Albicans Reinforces biofilm maturation and acidogenicity in saliva: An in vitro study[J]. Front Cell Infect Microbiol, 2020, 10: 623980. [21] Liu Y, Wang Z, Zhou Z, et al. Candida albicans CHK1 gene regulates its cross-kingdom interactions with Streptococcus mutans to promote caries[J]. Appl Microbiol Biotechnol, 2022, 106(21): 7251-7263. [22] Villhauer A, Zhu M, Shi W, et al. Role of mutans streptococci, acid tolerant bacteria and oral Candida species in predicting the onset of early childhood caries[J]. Front Dent Med, 2023, 4: 991746. [23] Garcia BA, Acosta NC, Tomar SL, et al. Association of Candida albicans and Cbp(+) Streptococcus mutans with early childhood caries recurrence[J]. Sci Rep, 2021, 11(1): 10802. [24] Hurley E, Barrett MPJ, Kinirons M, et al. Comparison of the salivary and dentinal microbiome of children with severe-early childhood caries to the salivary microbiome of caries-free children[J]. BMC Oral Health, 2019, 19(1): 13. [25] Kahharova D, Pappalardo VY, Buijs MJ, et al. Microbial indicators of dental health, dysbiosis, and early childhood caries[J]. J Dent Res, 2023, 102(7): 759-766. [26] Al-Hebshi NN, Baraniya D, Chen T, et al. Metagenome sequencing-based strain-level and functional characterization of supragingival microbiome associated with dental caries in children[J]. J Oral Microbiol, 2019, 11(1): 1557986. [27] Zhu C, Yuan C, Ao S, et al. The predictive potentiality of salivary microbiome for the recurrence of early childhood caries[J]. Front Cell Infect Microbiol, 2018, 8:423. [28] Krzyściak W, Kościelniak D, Papiez M, et al. Effect of a lactobacillus salivarius probiotic on a double-species Streptococcus Mutans and Candida Albicans caries biofilm[J]. Nutrients, 2017, 9(11):1242. [29] Fang F, Xu J, Li Q, et al. Characterization of a Lactobacillus brevis strain with potential oral probiotic properties[J]. BMC Microbiol, 2018, 18(1): 221. [30] Lin X, Wang Y, Ma Z, et al. Correlation between caries activity and salivary microbiota in preschool children[J]. Front Cell Infect Microbiol, 2023, 13: 1141474. [31] 张宁,王翔宇,侯如霞,等.慢病管理模式在低龄儿童龋中的应用[J].口腔疾病防治,2022,30(9): 670-674. [32] Yoon RK, Smaldone AM, Edelstein BL. Early childhood caries screening tools: a comparison of four approaches[J]. J Am Dent Assoc, 2012, 143(7): 756-763. [33] Gao X, Di Wu I, Lo EC, et al. Validity of caries risk assessment programmes in preschool children[J]. J Dent, 2013, 41(9): 787-795. [34] American Academy of Pediatric Dentistry. Caries-risk assessment and management for infants, children, and adolescents. The Reference Manual of Pediatric Dentistry[M]. Chicago, Ill.: American Academy of Pediatric Dentistry. 2024: 306-312. [35] Gao XL, Hsu CY, Xu Y, et al. Building caries risk assessment models for children[J]. J Dent Res, 2010, 89(6): 637-643. [36] 赵家亮,蔡和,程立,等.龋病风险评估模型的研究和应用进展[J].临床口腔医学杂志,2022,38(11): 696-698. [37] 陈宇伦,任晓琳,蔡和,等.口腔微生物应用在龋风险评估模型中的研究进展[J].临床口腔医学杂志, 2023, 39(5): 312-315. [38] Jørgensen MR, Twetman S. A systematic review of risk assessment tools for early childhood caries: is there evidence?[J]. Eur Arch Paediatr Dent, 2020, 21(2): 179-184. [39] Taqi M, Zaidi SJA. Predictive validity of the reduced Cariogram model for caries increment in non-cavitated and cavitated lesions: cohort study[J]. BMC Oral Health, 2023, 23(1): 790. [40] Su N, Lagerweij MD, van der Heijden G. Assessment of predictive performance of caries risk assessment models based on a systematic review and meta-analysis[J]. J Dent, 2021, 110: 103664. [41] Featherstone JDB, Crystal YO, Alston P, et al. A comparison of four caries risk assessment methods[J]. Front Oral Health, 2021, 2: 656558. [42] Cagetti MG, Bontà G, Cocco F, et al. Are standardized caries risk assessment models effective in assessing actual caries status and future caries increment? A systematic review[J]. BMC Oral Health, 2018, 18(1): 123. [43] Grier A, Myers JA, O'Connor TG, et al. Oral microbiota composition predicts early childhood caries onset[J]. J Dent Res, 2021, 100(6): 599-607. [44] Quivey RG, O'Connor TG, Gill SR, et al. Prediction of early childhood caries onset and oral microbiota[J]. Mol Oral Microbiol, 2021, 36(5): 255-257. [45] Teng F, Yang F, Huang S, et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota[J]. Cell Host Microbe, 2015, 18(3): 296-306. [46] Wang Y, Wang S, Wu C, et al. Oral microbiome alterations associated with early childhood caries highlight the importance of carbohydrate metabolic activities[J]. mSystems, 2019, 4(6): e00450-19. [47] Zhang L, Sun T, Zhu P, et al. Quantitative analysis of salivary oral bacteria associated with severe early childhood caries and construction of caries assessment model[J]. Sci Rep, 2020, 10(1): 6365. [48] 周庆楠,赵焕英,蔡爽,等.S-ECC患儿经治疗后菌斑微生物群落短期内改建过程分析[J].口腔疾病防治, 2023, 31(4):267-273. [49] Alamoudi A, Alamoudi R, Gazzaz Y, et al. Role of salivary biomarkers in diagnosis and detection of dental caries: A systematic review[J]. Diagnostics (Basel), 2022, 12(12): 3080. [50] Piekoszewska-Ziętek P, Turska-Szybka A, Olczak-Kowalczyk D. Salivary proteins and peptides in the aetiology of caries in children: Systematic literature review[J]. Oral Dis, 2019, 25(4): 1048-1056. [51] Li K, Wang J, Du N, et al. Salivary microbiome and metabolome analysis of severe early childhood caries[J]. BMC Oral Health, 2023, 23(1): 30. [52] Heimisdottir LH, Lin BM, Cho H, et al. Metabolomics insights in early childhood caries[J]. J Dent Res, 2021, 100(6): 615-622. [53] Khan SY, Schroth RJ, Cruz de Jesus V, et al. A systematic review of caries risk in children <6 years of age[J]. Int J Paediatr Dent, 2024, 34(4):410-431. [54] Park YH, Kim SH, Choi YY. Prediction models of early childhood caries based on machine learning algorithms[J]. Int J Environ Res Public Health, 2021, 18(16):8613. |