[1] Yuan T, Yang T, Chen H, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis [J]. Redox Biol, 2019, 20:247-260. [2] Réus GZ, Carlessi AS, Silva RH, et al. Relationship of oxidative stress as a link between diabetes mellitus and major depressive disorder [J]. Oxid Med Cell Longev, 2019, 2019:8637970. [3] Jia L, Xiong Y, Zhang W, et al. Metformin promotes osteogenic differentiation and protects against oxidative stress-induced damage in periodontal ligament stem cells via activation of the Akt/Nrf2 signaling pathway [J]. Exp Cell Res, 2020, 386(2):111717. [4] Moloney JN, Cotter TG. ROS signalling in the biology of cancer [J]. Semin Cell Dev Biol, 2018, 80:50-64. [5] El-Naggar AK, Chan JKC, Grandis JR, et al. WHO classification of head and neck tumours [M]. 4th edition, Lyon: IARC Press, 2017:112. [6] Snezhkina AV, Kudryavtseva AV, Kardymon OL, et al. ROS generation and antioxidant defense systems in normal and malignant cells[J]. Oxid Med Cell Longev, 2019, 2019:6175804. [7] Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem, 2017, 524:13-30. [8] Cruz AF, Vitório JG, Duarte-Andrade FF, et al. Reticular and erosive oral lichen planus have a distinct metabolomic profile: A preliminary study using gas chromatography-mass spectrometry [J]. Oral Pathol Med, 2019, 48(5):400-405. [9] Liu T, Zhang H, Yang X, et al. Study on expression of p16 and human papillomavirus 16 and 18 (E6) in OLP and its malignant transformation[J]. Pathol Res Pract, 2018, 214(2):296-302. [10] Yang XY, Li XZ, Zhang SN. Metabolomics analysis of oral mucosa reveals profile perturbation in reticular oral lichen planus [J]. Clin Chim Acta, 2018, 487:28-32. [11] Rekha VR, Sunil S, Rathy R. Evaluation of oxidative stress markers in oral lichen planus [J]. Oral Maxillofac Pathol, 2017, 21(3):387-393. [12] Darczuk D, Krzysciak W, Vyhouskaya P, et al. Salivary oxidative status in patients with oral lichen planus [J]. Physiol Pharmacol, 2016, 67(6):885-894. [13] Bakhtiari S, Toosi P, Samadi S, et al. Assessment of uric acid level in the saliva of patients with oral lichen planus [J]. Med Princ Pract, 2017, 26(1):57-60. [14] Tvarijonaviciute A, Aznar-Cayuela C, Rubio CP, et al. Salivary antioxidant status in patients with oral lichen planus:correlation with clinical signs and evolution during treatment with chamaemelum nobile [J]. Biomed Res Int, 2018, 2018:5187549. [15] Mansourian A, Shanbehzadeh N, Kia SJ, et al. Increased salivary aldehyde dehydrogenase 1 in non-reticular oral lichen planus [J]. An Bras Dermatol, 2017, 92(2):168-171. [16] Chen X, Hu Q, Wu T, et al. Proteomics-based investigation of multiple stages of OSCC development indicates that the inhibition of Trx-1 delays oral malignant transformation [J]. Int J Oncol, 2018, 52(3):733-742. [17] Lopez Jornet P, Aznar-Cayuela C. Efficacy of topical chamomile management vs. placebo in patients with oral lichen planus: a randomized double-blind study [J]. Eur Acad Dermatol Venereol, 2016, 30(10):1783-1786. [18] White CM, Chamberlin K, Eisenberg E. Curcumin, a turmeric extract, for oral lichen planus: A systematic review [J]. Oral Dis, 2019, 25(3):720-725. [19] Yang JY, Zhang J, Zhou G. Black pepper and its bioactive constituent piperine: promising therapeutic strategies for oral lichen planus [J]. Inflammopharmacology, 2019, 27(1):5-13. [20] Babiuch K, Bednarczyk A, Gawlik K, et al. Evaluation of enzymatic and non-enzymatic antioxidant status and biomarkers of oxidative stress in saliva of patients with oral squamous cell carcinoma and oral leukoplakia: a pilot study [J]. Acta Odontol Scand, 2019, 77(6):408-418. [21] Srivastava KC, Shrivastava D. Analysis of plasma lipid peroxidation and antioxidant enzymes status in patients of oral leukoplakia: A case control study [J]. Int Soc Prev Community Dent, 2016, 6(Suppl 3):S213-S218. [22] Senghore T, Li YF, Sung FC, et al. Biomarkers of oxidative stress associated with the risk of potentially malignant oral disorders [J]. Anticancer Res, 2018, 38(9):5211-5216. [23] Choudhari SK, Chaudhary M, Gadbail AR, et al. Oxidative and antioxidative mechanisms in oral cancer and precancer: a review [J]. Oral Oncol, 2014, 50(1):10-8. [24] Yoshida T, Terabe T, Nagai H, et al. Association between p62 expression and clinicopathological characteristics in oral leukoplakia [J]. Clin Exp Dent Res, 2019, 5(4):389-397. [25] Shah PH, Venkatesh R, More CB. Determination of role of ceruloplasmin in oral potentially malignant disorders and oral malignancy-A cross-sectional study [J]. Oral Dis, 2017, 23(8):1066-1071. [26] Guttenplan JB, Chen KM, Sun YW, et al. Effects of black raspberry extract and protocatechuic acid on carcinogen-DNA adducts and mutagenesis, and oxidative stress in rat and human oral cells [J]. Cancer Prev Res (Phila), 2016, 9(8):704-712. [27] Avinash Tejasvi ML, Bangi BB, Geetha P, et al. Estimation of serum superoxide dismutase and serum malondialdehyde in oral submucous fibrosis: a clinical and biochemical study [J]. Cancer Res Ther, 2014, 10(3):722-725. [28] Bose KS, Vyas P, Singh M. Plasma non-enzymatic antioxidants-vitamin C, E,beta-carotenes, reduced glutathione levels and total antioxidant activity in oral sub mucous fibrosis [J]. Eur Rev Med Pharmacol Sci, 2012, 16(4):530-532. [29] Pitiyage GN, Slijepcevic P, Gabrani A, et al. Senescent mesenchymal cells accumulate in human fibrosis by a telomere-independent mechanism and ameliorate fibrosis through matrix metalloproteinases [J]. J Pathol, 2011, 223(5):604-617. [30] Rehman A, Ali S, Lone MA, et al. Areca nut alkaloids induce irreparable DNA damage and senescence in fibroblasts and may create a favourable environment for tumour progression [J]. J Oral Pathol Med, 2016, 45(5):365-372. [31] Chang MC, Chen YJ, Chang HH, et al. Areca nut components affect COX-2, cyclin B1/cdc25C and keratin expression, PGE2 production in keratinocyte is related to reactive oxygen species, CYP1A1,Src, EGFR and Ras signaling [J]. PLoS One, 2014, 9(7):e101959. [32] Arakeri G, Boraks G, Aljabab AS, et al. Breath Alkane as an index of severity for oral submucous fibrosis: A new perspective? [J]. Med Hypotheses, 2017, 98:18-20. [33] Kumar MA, Radhika B, Gollamudi N, et al. Hyperbaric oxygen therapy-a novel treatment modality in oral submucous fibrosis: a review [J]. Clin Diagn Res, 2015, 9(5):ZE01-ZE04. [34] Salehi B, Lopez-Jornet P, Pons-Fuster López E, et al. Plant-derived bioactives in oral mucosal lesions: a key emphasis to curcumin, lycopene, chamomile, aloe vera, green tea and coffee properties[J]. Biomolecules, 2019, 9(3):106. |