[1] Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s) [J]. Microsc Res Tech, 2000, 50(3):184-195. [2] Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis [J]. Nature, 1999, 397(6717):315-323. [3] Blangy A, Bompard G, Guerit D, et al. The osteoclast cytoskeleton- current understanding and therapeutic perspectives for osteoporosis [J]. J Cell Sci, 2020, 133(13):jcs244798. [4] Caton JG, Armitage G, Berglundh T, et al. A new classification scheme for periodontal and peri-implant diseases and conditions-Introduction and key changes from the 1999 classification [J]. J Clin Periodontol, 2018, 45 Suppl 20:S1-S8. [5] Kaur A, Kharbanda OP, Kapoor P, et al. A review of biomarkers in peri-miniscrew implant crevicular fluid (PMICF) [J]. Prog Orthod, 2017, 18(1):42. [6] Brown C. Osteoporosis: Staying strong [J]. Nature, 2017, 550(7674):S15-S17. [7] Li H, Xiao Z, Quarles LD, et al. Osteoporosis: Mechanism, molecular target and current status on drug development [J]. Curr Med Chem, 2021, 28(8):1489-1507. [8] Schwarz F, Derks J, Monje A, et al. Peri-implantitis [J]. J Periodontol, 89 Suppl 1:S267-S290. [9] Alharbi F, Almuzian M, Bearn D. Miniscrews failure rate in orthodontics: systematic review and meta-analysis [J]. Eur J Orthod, 2018, 40(5):519-530. [10] Ono T, Hayashi M, Sasaki F, et al. RANKL biology: bone metabolism, the immune system, and beyond [J]. Inflamm Regen, 2020, 40:2. [11] Okamoto K, Nakashima T, Shinohara M, et al. Osteoimmunology: The conceptual framework unifying the immune and skeletal systems [J]. Physiol Rev, 2017, 97(4):1295-1349. [12] Nakashima T, Hayashi M, Takayanagi H. New insights into osteoclastogenic signaling mechanisms [J]. Trends Endocrinol Metab, 2012, 23(11):582-590. [13] Kang JY, Kang N, Yang YM, et al. The role of Ca2+-NFATc1 signaling and its modulation on osteoclastogenesis [J]. Int J Mol Sci, 2020, 21(10):3646. [14] Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts [J]. Dev Cell, 2002, 3(6):889-901. [15] Ta HM, Nguyen GT, Jin HM, et al. Structure-based development of a receptor activator of nuclear factor-kappaB ligand (RANKL) inhibitor peptide and molecular basis for osteopetrosis [J]. Proc Natl Acad Sci U S A, 2010, 107(47):20281-20286. [16] Schieferdecker A, Voigt M, Riecken K, et al. Denosumab mimics the natural decoy receptor osteoprotegerin by interacting with its major binding site on RANKL [J]. Oncotarget, 2014, 5(16):6647-6653. [17] Heath DJ, Vanderkerken K, Cheng X, et al. An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma [J]. Cancer Res, 2007, 67(1):202-208. [18] 陈天洪,李景峰.小分子活性多肽在骨组织工程中的研究进展[J].国际生物医学工程杂志,2020,43(5):376-381. |