[1] Borges CM, Krishnamurthy M. Are we getting any better? A critical analysis of selected healthy people 2020 oral health indicators in 1999-2004 and 2013-2016, USA[J]. Int J Environ Res Public Health, 2022, 19(9): 5250. [2] Brunthaler A, König F, Lucas T, et al. Longevity of direct resin composite restorations in posterior teeth: a review[J]. Clin Oral Investig, 2003, 7(2): 63-70. [3] Heintze SD, Rousson V. Clinical effectiveness of direct class Ⅱ restorations-a meta-analysis[J]. J Adhes Dent, 2012, 14(5): 407-431. [4] Heintze SD, Ilie N, Hickel R, et al. Laboratory mechanical parameters of composite resins and their relation to fractures and wear in clinical trials-A systematic review[J]. Dent Mater, 2016, 33(3): e101-e114. [5] Ligon-Auer SC, Schwentenwein M, Gorsche C, et al. Toughening of photo-curable polymer networks: A review[J]. Polym Chem, 2016, 7(2): 257-286. [6] Szczesio-Wlodarczyk A, Sokolowski J, Kleczewska J, et al. Ageing of dental composites based on methacrylate resins-A critical review of the causes and method of assessment[J]. Polymers (Basel), 2020, 12(4): 882. [7] Szczesio-Wlodarczyk A, Fronczek M, Ranoszek-Soliwoda K, et al. The first step in standardizing an artificial aging protocol for dental composites-evaluation of basic protocols[J]. Molecules, 2022, 27(11): 3511. [8] Lichtenhan JD, Vu NQ, Carter JA, et.al. Silsesquioxane-siloxane copolymers from polyhedral Silsesquioxane[J]. Macromolecules, 1993, 26(8): 2141-2142. [9] Wu X, Sun Y, Xie W, et. al. Development of novel dental nanocomposites reinforced with polyhedral oligomeric silsesquioxane (POSS)[J]. Dent Mater, 2010, 26(5): 456-462. [10] Feng D, Guo X, Jiang X, et al. Properties of methacryl polyhedral oligomeric silsesquioxane (POSS-MA) doped methacrylate-based dental resins and composites containing glass flake/Ba-Al-SiO2 glass powder as inorganic dental fillers[J]. Acta Medica Mediterranea, 2019, 35(1): 87-92. [11] Chen CY, Huang XK, Lin SP, et al. Low-shrinkage visible-light-curable urethane-modified epoxy acrylate/SiO2 composites as dental restorative materials[J]. Compos Sci Technol, 2008, 68(13): 2811-2817. [12] Minch MJ. An introduction to hydrogen bonding[J]. J Chem Educ, 1999, 76(6):759. [13] Sánchez G. Introduction to "intramolecular Hydrogen Bonding 2018"[J]. Molecules, 2019, 24(16): 2858. [14] Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks[J]. Dent Mater, 2006, 22(3): 211-222. [15] Gonçalves F, Kawano Y, Pfeifer C, et al. Influence of BisGMA, TEGDMA, and BisEMA contents on viscosity, conversion, and flexural strength of experimental resins and composites[J]. Eur J Oral Sci, 2009, 117(4): 442-446. [16] Barszczewska-Rybarek IM. Structure-property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA[J]. Dent Mater, 2009, 25(9): 1082-1089. [17] Peutzfeldt A. Resin composites in dentistry: the monomer systems[J]. Eur J Oral Sci, 1997, 105(2): 97-116. [18] Huang W, Ren L, Cheng Y, et al. Evaluation of the color stability, water sorption, and solubility of current resin composites[J]. Materials (Basel), 2022, 15(19):6710. [19] Klauer E, Belli R, Petschelt A, et al. Mechanical and hydrolytic degradation of an Ormocer®-based Bis-GMA-free resin composite[J]. Clin Oral Investig, 2019, 23(5):2113-2121. |