[1] Yoshihara T, Taneichi R, Yawaka Y. Occlusal disharmony increases stress response in rats [J]. Neurosci Lett, 2009, 452(2):181-184. [2] Piancino MG, Tortarolo A, Polimeni A, et al. Adverse effects of the bite-raised condition in animal studies: A systematic review [J]. Arch Oral Biol, 2019, 107:104516. [3] 莫思怡,徐啸翔,曹烨,等.重复咬合干扰对大鼠咬肌痛觉敏感的易化作用[J].口腔医学研究,2018,34(3):266-269. [4] Shimizu Y, Khan M, Kato G, et al. Occlusal disharmony-induced stress causes osteopenia of the lumbar vertebrae and long bones in mice [J]. Sci Rep, 2018, 8(1):173. [5] Khayat NAR, Shpack N, Emodi Perelman A, et al. Association between posterior crossbite and/or deep bite and temporomandibular disorders among Palestinian adolescents: A sex comparison[J]. CRANIO, 2021, 39(1):29-34. [6] Melis M, Zawawi KH. Occlusal dysesthesia: a topical narrative review[J]. J Oral Rehabil, 2015, 42(10):779-785. [7] Li J, Ma K, Yi D, et al. Nociceptive behavioural assessments in mouse models of temporomandibular joint disorders [J]. Int J Oral Sci, 2020, 12(1):26. [8] Seibenhener ML, Wooten MC. Use of the open field maze to measure locomotor and anxiety-like behavior in mice [J]. J Vis Exp, 2015, (96):e52434. [9] Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents[J]. Nat Protoc, 2007, 2(2):322-328. [10] Bourin M, Hascoёt M. The mouse light/dark box test [J]. Eur J Pharmacol, 2003, 463(1-3):55-65. [11] Beagan JA, Pastuzyn ED, Fernandez LR, et al. Three-dimensional genome restructuring across timescales of activity-induced neuronal gene expression [J]. Nat Neurosci, 2020, 23(6):707-717. [12] Stanisavljevi A, Peri I, Bernardi RE, et al. Clozapine increased c-Fos protein expression in several brain subregions of socially isolated rats [J]. Brain Res Bull, 2019, 152:35-44. [13] Hiser J, Koenigs M. The multifaceted role of the ventromedial prefrontal cortex in emotion, decision making, social cognition, and psychopathology [J]. Biol Psychiatry, 2018, 83(8):638-647. [14] Babaev O, Piletti Chatain C, Krueger-Burg D. Inhibition in the amygdala anxiety circuitry [J]. Exp Mol Med, 2018, 50(4):1-16. [15] Shi T, Feng S, Wei M, et al. Role of the anterior agranular insular cortex in the modulation of fear and anxiety [J]. Brain Res Bull, 2020, 155:174-183. [16] Barbier M, Chometton S, Pautrat A, et al. A basal ganglia-like cortical-amygdalar-hypothalamic network mediates feeding behavior [J]. Proc Natl Acad Sci, 2020, 117(27):15967-15976. [17] Han W, Tellez LA, Rangel MJ, et al. Integrated control of predatory hunting by the central nucleus of the amygdala [J]. Cell, 2017, 168(1-2):311-324.e18. [18] Ikenoue E, Akhter F, Tsutsumi Y, et al. Transcortical descending pathways through granular insular cortex conveying orofacial proprioception [J]. Brain Res, 2018, 1687:11-19. [19] Uhart M, Chong RY, Oswald L, et al. Gender differences in hypothalamic-pituitary-adrenal (HPA) axis reactivity [J]. Psychoneuroendocrinology, 2006, 31(5):642-652. [20] Tang X, Li J, Jiang T, et al. Experimental occlusal disharmony-A promoting factor for anxiety in rats under chronic psychological stress [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 75:165-175. |