[1] Pistilli R, Canullo L, Pesce P, et al. Guided implant surgery and sinus lift in severely resorbed maxillae: A retrospective clinical study with up to 10 years of follow-up [J]. J Dent, 2022, 121: 104137. [2] Yan M, Liu R, Bai S, et al. Transalveolar sinus floor lift without bone grafting in atrophic maxilla: A meta-analysis [J]. Sci Rep, 2018, 8(1):1451. [3] Rammelsberg P, Pahle J, Büsch C, et al. Long-term apical bone gain after implant placement combined with internal sinus-floor elevation without graft [J]. BMC Oral Health, 2020, 20(1):197. [4] Shi JY, Qian SJ, Gu YX, et al. Long-term outcomes of osteotome sinus floor elevation without grafting in severely atrophic maxilla: A 10-year prospective study [J]. J Clin Periodontol, 2020, 47(12): 1528-1535. [5] Duan DH, Fu JH, Qi W, et al. Graft-free maxillary sinus floor elevation: A systematic review and meta-analysis [J]. J Periodontol, 2017, 88(6): 550-564. [6] Berbéri A, Sabbagh J, Bou Assaf R, et al. Comparing the osteogenic potential of schneiderian membrane and dental pulp mesenchymal stem cells: an in vitro study [J]. Cell Tissue Bank, 2021, 22(3): 409-417. [7] Assaf RB, Zibara K, Fayyad-Kazan M, et al. Healing of bone defects in pig's femur using mesenchymal cells originated from the sinus membrane with different scaffolds [J]. Stem Cells Int, 2019, 2019: 4185942. [8] Weng Y, Wang H, Wu D, et al. A novel lineage of osteoprogenitor cells with dual epithelial and mesenchymal properties govern maxillofacial bone homeostasis and regeneration after MSFL [J]. Cell Res, 2022, 32(9): 814-830. [9] Guo JB, Weng JQ, Rong Q, et al. Investigation of multipotent postnatal stem cells from human maxillary sinus membrane [J]. Sci Rep, 2015, 5:11660. [10] Berbéri A, Al-Nemer F, Hamade E, et al. Mesenchymal stem cells with osteogenic potential in human maxillary sinus membrane: an in vitro study [J]. Clin Oral Investig, 2017, 21(5): 1599-1609. [11] Gruber R, Kandler B, Fuerst G, et al. Porcine sinus mucosa holds cells that respond to bone morphogenetic protein (BMP)-6 and BMP-7 with increased osteogenic differentiation in vitro [J]. Clin Oral Implants Res, 2004, 15(5): 575-580. [12] Li C, Zhang X, Zheng Z, et al. Nell-1 is a key functional modulator in osteochondrogenesis and beyond [J]. J Dent Res, 2019, 98(13):1458-1468. [13] Zeng L, He H, Sun M, et al. Runx2 and Nell-1 in dental follicle progenitor cells regulate bone remodeling and tooth eruption [J]. Stem Cell Res Ther, 2022, 13(1):486. [14] Chen X, Wang H, Yu M, et al. Cumulative inactivation of Nell-1 in Wnt1 expressing cell lineages results in craniofacial skeletal hypoplasia and postnatal hydrocephalus [J]. Cell Death Differ, 2020, 27(4): 1415-1430. [15] Dobson LK, Zeitouni S, McNeill EP, et al. Canine mesenchymal stromal cell-mediated bone regeneration is enhanced in the presence of sub-therapeutic concentrations of bmp-2 in a murine calvarial defect model [J]. Front Bioeng Biotechnol, 2021, 9:764703. [16] Song D, Huang S, Zhang L, et al. Differential responsiveness to BMP9 between patent and fused suture progenitor cells from craniosynostosis patients [J]. Plast Reconstr Surg, 2020, 145(3): 552-562. [17] Xia K, Cen X, Yu L, et al. Long noncoding RNA expression profiles during the NEL-like 1 protein-induced osteogenic differentiation [J]. J Cell Physiol, 2020, 235(9): 6010-6022. [18] James AW, Shen J, Tsuei R, et al. NELL-1 induces Sca-1+ mesenchymal progenitor cell expansion in models of bone maintenance and repair [J]. JCI Insight, 2017, 2(12):e92573. [19] Yu L, Cen X, Xia K, et al. microRNA expression profiles and the potential competing endogenous RNA networks in NELL-1-induced human adipose-derived stem cell osteogenic differentiation [J]. J Cell Biochem, 2020, 121(11): 4623-4641. [20] Song Y, Pan Y, Wu M, et al. METTL3-mediated lncRNA m6A modification in the osteogenic differentiation of human adipose-derived stem cells induced by NEL-like 1 protein [J]. Stem Cell Rev Rep, 2021, 17(6): 2276-2290. [21] Li M, Wang Q, Han Q, et al. Novel molecule nell-1 promotes the angiogenic differentiation of dental pulp stem cells [J]. Front Physiol, 2021, 12:703593. [22] An HJ, Ko KR, Baek M, et al. Pro-angiogenic and osteogenic effects of adipose tissue-derived pericytes synergistically enhanced by Nel-like protein-1 [J]. Cells, 2021, 10(9): 2244. [23] Wu J, Wang Q, Han Q, et al. Effects of Nel-like molecule-1 and bone morphogenetic protein 2 combination on rat pulp repair [J]. J Mol Histol, 2019, 50(3): 253-261. [24] Li C, Zheng Z, Jiang J, et al. Neural egfl-like 1 regulates cartilage maturation through runt-related transcription factor 3-mediated indian hedgehog signaling [J]. Am J Pathol, 2018, 188(2): 392-403. [25] Li C, Zheng Z, Zhang X, et al. Nfatc1 is a functional transcriptional factor mediating Nell-1-induced Runx3 upregulation in chondrocytes [J]. Int J Mol Sci, 2018, 19(1): 168. [26] Karner CM, Long F. Wnt signaling and cellular metabolism in osteoblasts [J]. Cell Mol Life Sci, 2017, 74(9): 1649-1657. [27] Zhu M, Fan Z. The role of the Wnt signalling pathway in the energy metabolism of bone remodelling [J]. Cell Prolif, 2022, 55(11): e13309. [28] Shen J, James AW, Zhang X, et al. Novel Wnt regulator NEL-like molecule-1 antagonizes adipogenesis and augments osteogenesis induced by bone morphogenetic protein 2 [J]. Am J Pathol, 2016, 186(2): 419-434. [29] James AW, Shen J, Zhang X, et al. NELL-1 in the treatment of osteoporotic bone loss [J]. Nat Commun, 2015, 6: 7362. [30] Jiang H, Zhang Z, Yu Y, et al. Drug discovery of DKK1 inhibitors [J]. Front Pharmacol, 2022, 13: 1-17. [31] Nelson AL, Fontana GL, Miclau E, et al. Therapeutic approaches to activate the canonical Wnt pathway for bone regeneration [J]. J Tissue Eng Regen Med, 2022, 16(11): 961-967. |