[1] Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces[J]. J Dent Res, 1955, 34(6): 849-853. [2] Sofan E, Sofan A, Palaia G, et al. Classification review of dental adhesive systems: from the Ⅳ generation to the universal type[J]. Ann Stomatol (Roma), 2017, 8(1): 1-17. [3] Wang Y, Ding N, Zong Z, et al. Etch-mineralizing treatment to improve dentin bonding[J]. J Dent, 2022, 126: 104305. [4] Somrit P, Tantilertanant Y, Srisawasdi S. Primer application technique and remaining dentin thickness affected microtensile bond strength of contemporary dentin adhesives under simulated pulp pressure[J]. Clin Oral Investig, 2023, 27(1): 139-149. [5] Godfrey PD, Rodgers FM, Brown RD. Theory versus experiment in jet spectroscopy: Glycolic acid[J]. J Am Chem Soc, 1997, 119(9): 2232-2239. [6] Green BA, Yu RJ, Van Scott EJ. Clinical and cosmeceutical uses of hydroxyacids[J]. Clin Dermatol, 2009, 27(5): 495-501. [7] Tang SC, Yang JH. Dual effects of alpha-hydroxy acids on the skin[J]. Molecules, 2018, 23(4): 863. [8] Lee KC, Wambier CG, Soon SL, et al. Basic chemical peeling: Superficial and medium-depth peels[J]. J Am Acad Dermatol, 2019, 81(2): 313-324. [9] Bernstein EF, Lee J, Brown DB, et al. Glycolic acid treatment increases type Ⅰ collagen mRNA and hyaluronic acid content of human skin[J]. Dermatol Surg, 2001, 27(5): 429-433. [10] Narda M, Trullas C, Brown A, et al. Glycolic acid adjusted to pH 4 stimulates collagen production and epidermal renewal without affecting levels of proinflammatory TNF-alpha in human skin explants[J]. J Cosmet Dermatol, 2021, 20(2): 513-521. [11] Venkataraman KJ, Boominathan SK, Nagappan R, et al. Efficacy of glycolic acid on debris and smear removal as a final rinse solution in curved canals: A scanning electron microscope study[J]. J Pharm Bioallied Sci, 2021, 13(Suppl 2): S1603-S1608. [12] Barcellos D, Farina AP, Barcellos R, et al. Effect of a new irrigant solution containing glycolic acid on smear layer removal and chemical/mechanical properties of dentin[J]. Sci Rep, 2020, 10(1): 7313. [13] Cecchin D, Bringhenti IL, Bernardi JB, et al. Alpha-hydroxy glycolic acid for root dentin etching: Morphological analysis and push out bond strength[J]. Int J Adhes Adhes, 2019, 90: 138-143. [14] Hua X, Cao R, Zhou X, et al. One-step continuous/semi-continuous whole-cell catalysis production of glycolic acid by a combining bioprocess with in-situ cell recycling and electrodialysis[J]. Bioresour Technol, 2019, 273: 515-520. [15] Xie CZ, Healy T, Russell J. EDTA in the environment: with special reference to the dairy industry[J]. Int J Environ Waste Manag, 2007, 1(4): 351-362. [16] Yoshida Y, Van Meerbeek B, Nakayama Y, et al. Adhesion to and decalcification of hydroxyapatite by carboxylic acids[J]. J Dent Res, 2001, 80(6): 1565-1569. [17] Yoshioka M, Yoshida Y, Inoue S, et al. Adhesion/decalcification mechanisms of acid interactions with human hard tissues[J]. J Biomed Mater Res, 2002, 59(1): 56-62. [18] Janusz W, Skwarek E. Adsorption of the tartrate ions in the hydroxyapatite/aqueous solution of NaCl System[J]. Materials (Basel), 2021, 14(11): 3039. [19] Chien YC, Burwell AK, Saeki K, et al. Distinct decalcification process of dentin by different cariogenic organic acids: Kinetics, ultrastructure and mechanical properties[J]. Arch Oral Biol, 2016, 63: 93-105. [20] Vidal CMP, LaRoy C, Chagas Toledo D, et al. Hydroxy acids for adhesion to enamel and dentin: Long-term bonding performance and effect on dentin biostability[J]. J Dent, 2021, 107: 103613. [21] DeRocher KA, Smeets PJM, Goodge BH, et al. Chemical gradients in human enamel crystallites[J]. Nature, 2020, 583(7814): 66-71. [22] Trevelin LT, Villanueva J, Zamperini CA, et al. Investigation of five α-hydroxy acids for enamel and dentin etching: Demineralization depth, resin adhesion and dentin enzymatic activity[J]. Dent Mater, 2019, 35(6): 900-908. [23] Cecchin D, Farina AP, Vidal C, et al. A novel enamel and dentin etching protocol using alpha-hydroxy glycolic acid: Surface property, etching pattern, and bond strength studies[J]. Oper Dent, 2018, 43(1): 101-110. [24] Barkmeier WW, Erickson RL, Kimmes NS, et al. Effect of enamel etching time on roughness and bond strength[J]. Oper Dent, 2009, 34(2): 217-222. [25] Aung S, Takagaki T, Ikeda M, et al. Ultra-morphological studies on enamel-universal adhesive interface[J]. J Dent, 2021, 104: 103527. [26] Han F, Jin X, Yuan X, et al. Interactions of two phosphate ester monomers with hydroxyapatite and collagen fibers and their contributions to dentine bond performance[J]. J Dent, 2022, 122: 104159. [27] Bello YD, Farina AP, Souza MA, et al. Glycolic acid: Characterization of a new final irrigant and effects on flexural strength and structural integrity of dentin[J]. Mater Sci Eng C Mater Biol Appl, 2020, 106: 110283. [28] Marafiga FA, Barbosa AFA, Silva E, et al. Effect of glycolic acid and EDTA on dentin mechanical properties[J]. Aust Endod J, 2022, 48(1): 27-31. [29] Maso PC, Souza MA, Borba M, et al. Influence of photodynamic therapy, different final irrigants, and ultrasonic activation on the bond strength of glass fiber posts to root dentin[J]. Photodiagnosis Photodyn Ther, 2022, 40: 103180. [30] Souza MA, Trentini BM, Parizotto TF, et al. Influence of a glycolic acid-based final irrigant for photosensitizer removal of photodynamic therapy on the microhardness and colour change of the dentin structure[J]. Photodiagnosis Photodyn Ther, 2021, 33: 102151. [31] Bello YD, Porsch HF, Farina AP, et al. Glycolic acid as the final irrigant in endodontics: Mechanical and cytotoxic effects[J]. Mater Sci Eng C Mater Biol Appl, 2019, 100: 323-329. [32] Trevelin LT, Villanueva J, Zamperini CA, et al. Investigation of five alpha-hydroxy acids for enamel and dentin etching: Demineralization depth, resin adhesion and dentin enzymatic activity[J]. Dent Mater, 2019, 35(6): 900-908. [33] Trevelin LT, Alania Y, Mathew M, et al. Effect of dentin biomodification delivered by experimental acidic and neutral primers on resin adhesion[J]. J Dent, 2020, 99: 103354. [34] Porto I, Nascimento TG, Oliveira JMS, et al. Use of polyphenols as a strategy to prevent bond degradation in the dentin-resin interface[J]. Eur J Oral Sci, 2018, 126(2): 146-158. [35] Mazzoni A, Nascimento FD, Carrilho M, et al. MMP activity in the hybrid layer detected with in situ zymography[J]. J Dent Res, 2012, 91(5): 467-472. [36] Maravic T, Breschi L, Paganelli F, et al. Endogenous enzymatic activity of primary and permanent dentine[J]. Materials (Basel), 2021, 14(14): 4043. [37] Amaral SFD, Scaffa PMC, Rodrigues RDS, et al. Dynamic influence of pH on metalloproteinase activity in human coronal and radicular dentin[J]. Caries Res, 2018, 52(1-2): 113-118. [38] DeVito-Moraes AG, Francci C, Vidal CM, et al. Phosphoric acid concentration affects dentinal MMPs activity[J]. J Dent, 2016, 53: 30-37. [39] Banerjee S, Amin SA, Jha T. A fragment-based structural analysis of MMP-2 inhibitors in search of meaningful structural fragments[J]. Comput Biol Med, 2022, 144: 105360. [40] Moore KM, Girens RE, Larson SK, et al. A spectrum of exercise training reduces soluble Aβ in a dose-dependent manner in a mouse model of Alzheimer's disease[J]. Neurobiol Dis, 2016, 85: 218-224. [41] Peng M, Yang D, Hou Y, et al. Intracellular citrate accumulation by oxidized ATM-mediated metabolism reprogramming via PFKP and CS enhances hypoxic breast cancer cell invasion and metastasis[J]. Cell Death Dis, 2019, 10(3): 228. [42] Tang SC, Tang LC, Liu CH, et al. Glycolic acid attenuates UVB-induced aquaporin-3, matrix metalloproteinase-9 expression, and collagen degradation in keratinocytes and mouse skin[J]. Biochem J, 2019, 476(10): 1387-1400. [43] Hashimoto M, Ohno H, Endo K, et al. The effect of hybrid layer thickness on bond strength: demineralized dentin zone of the hybrid layer[J]. Dent Mater, 2000, 16(6): 406-411. |