[1] Yamada S, Shanbhag S, Mustafa K. Scaffolds in periodontal regenerative treatment [J]. Dent Clin North Am, 2022, 66(1): 111-130. [2] Wang Z, Wang H, Xiong J, et al. Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration [J]. Mater Sci Eng C Mater Biol Appl, 2021, 128: 112287. [3] Kellaway SC, Ullrich MM, Dziemidowicz K. Electrospun drug-loaded scaffolds for nervous system repair [J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2024, 16(3): e1965. [4] Sun W, Gao C, Liu H, et al. Scaffold-based poly(vinylidene fluoride) and its copolymers: Materials, fabrication methods, applications, and perspectives [J]. ACS Biomater Sci Eng, 2024, 10(5): 2805-2826. [5] Zhou J, Wang P, Yu DG, et al. Biphasic drug release from electrospun structures [J]. Expert Opin Drug Deliv, 2023, 20(5): 621-640. [6] Liu Y, Li C, Feng Z, et al. Advances in the preparation of nanofiber dressings by electrospinning for promoting diabetic wound healing [J]. Biomolecules, 2022, 12(12):1727. [7] Sadek KM, Mamdouh W, Habib SI, et al. In vitro biological evaluation of a fabricated polycaprolactone/pomegranate electrospun scaffold for bone regeneration [J]. Acs Omega, 2021, 6(50): 34447-34459. [8] Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique [J]. Biotechnol Adv, 2010, 28(3): 325-347. [9] Anselmi C, Mendes Soares IP, Leite ML, et al. Cytocompatibility and bioactivity of calcium hydroxide-containing nanofiber scaffolds loaded with fibronectin for dentin tissue engineering [J]. Clin Oral Investig, 2022, 26(5): 4031-4047. [10] Han S, Nie K, Li J, et al. 3D electrospun nanofiber-based scaffolds: From preparations and properties to tissue regeneration applications [J]. Stem Cells Int, 2021, 2021: 8790143. [11] Gungor-Ozkerim PS, Balkan T, Kose GT, et al. Incorporation of growth factor loaded microspheres into polymeric electrospun nanofibers for tissue engineering applications [J]. J Biomed Mater Res A, 2014, 102(6): 1897-1908. [12] Faridi Esfanjani A, Jafari SM. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds [J]. Colloids Surf B Biointerfaces, 2016, 146: 532-543. [13] Li ZR, Zhang XC, Ouyang J, et al. Ca2+-supplying black phosphorus-based scaffolds fabricated with microfluidic technology for osteogenesis[J]. Bioact Mater, 2021, 6(11): 4053-4064. [14] Zhang X, Li Q, Li L, et al. Bioinspired mild photothermal effect-reinforced multifunctional fiber scaffolds promote bone regeneration [J]. ACS Nano, 2023, 17(7): 6466-6479. [15] Cheng G, Yin C, Tu H, et al. Controlled co-delivery of growth factors through layer-by-layer assembly of core-shell nanofibers for improving bone regeneration [J]. ACS Nano, 2019, 13(6): 6372-6382. [16] Muthukrishnan L. An overview on electrospinning and its advancement toward hard and soft tissue engineering applications [J]. Colloid Polym Sci, 2022, 300(8): 875-901. [17] Kim SE, Tiwari AP. Three dimensional polycaprolactone/cellulose scaffold containing calcium-based particles: a new platform for bone regeneration [J]. Carbohyd Polym, 2020, 250:116880. [18] Leu Alexa R, Cucuruz A, Ghitulica CD, et al. 3D printable composite biomaterials based on gelMA and hydroxyapatite powders doped with cerium ions for bone tissue regeneration [J]. Int J Mol Sci, 2022, 23(3):1841. [19] Song T, Zhou JH, Shi M, et al. Osteon-mimetic 3D nanofibrous scaffold enhances stem cell proliferation and osteogenic differentiation for bone regeneration [J]. Biomater Sci, 2022, 10(4): 1090-1103. [20] Swift J, Discher DE. The nuclear lamina is mechano-responsive to ECM elasticity in mature tissue [J]. J Cell Sci, 2014, 127(14): 3005-3015. |