[1] Barbero A, Ploegert S, Heberer M, et al. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes [J]. Arthritis and rheumatism, 2003, 48(5)∶1315-1325 [2] Alsalameh S, Amin R, Gemba T, et al.Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage [J]. Arthritis Rheum, 2004, 50(5)∶1522-1532 [3] Fickert S, Fiedler J, Brenner RE.Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers [J]. Arthritis Res Ther, 2004, 6(5)∶R422-R432 [4] Hattori S, Oxford C, Reddi AH.Identification of superficial zone articular chondrocyte stem/progenitor cells [J]. Biochem Biophys Res Commun, 2007, 358(1)∶99-103 [5] Koelling S, Kruegel J, Irmer M, et al.Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis [J]. Cell Stem Cell,2009,4(4)∶324-335 [6] Seol D, Mccabe DJ, Choe H, et al.Chondrogenic progenitor cells respond to cartilage injury [J]. Arthritis Rheum, 2012, 64(11)∶3626-3637 [7] Williams R, Khan IM, Richardson K, et al.Identification and clonal characterisation of a progenitor cell sub-population in normal human articular cartilage [J]. PLoS One, 2010, 5(10)∶e13246 [8] Hung SC, Kuo PY, Chang CF, et al. Alpha-smooth muscle actin expression and structure integrity in chondrogenesis of human mesenchymal stem cells [J]. Cell Tissue Res, 2006, 324(3)∶457-466 [9] Karlsson C, Stenhamre H, Sandstedt J, et al. Neither notch1 expression nor cellular size correlate with mesenchymal stem cell properties of adult articular chondrocytes [J]. Cells Tissues Organs, 2008, 187(4)∶275-285 [10] Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J]. Cytotherapy, 2006, 8(4)∶315-317 [11] Diaz-Romero J, Gaillard JP, Grogan SP, et al. Immunophenotypic analysis of human articular chondrocytes: Changes in surface markers associated with cell expansion in monolayer culture [J]. J Cell Physiol, 2005, 202(3)∶731-742 [12] Grogan SP, Barbero A, Diaz-Romero J, et al. Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity [J]. Arthritis Rheum, 2007, 56(2)∶586-595 [13] Wu L, Bluguermann C, Kyupelyan L, et al. Human developmental chondrogenesis as a basis for engineering chondrocytes from pluripotent stem cells [J]. Stem Cell Reports, 2013, 1(6)∶575-589 [14] Grogan SP, Duffy SF, Pauli C, et al. Zone-specific gene expression patterns in articular cartilage [J]. Arthritis Rheum, 2013, 65(2)∶418-428 [15] Dowthwaite GP, Bishop JC, Redman SN, et al. The surface of articular cartilage contains a progenitor cell population [J]. J Cell Sci, 2004, 117(Pt 6)∶889-897 [16] Pretzel D, Linss S, Rochler S, et al. Relative percentage and zonal distribution of mesenchymal progenitor cells in human osteoarthritic and normal cartilage [J]. Arthritis Res Ther, 2011, 13(2)∶R64 [17] Nathan J, Ruscitto A, Pylawka S, et al. Fibrocartilage stem cells engraft and self-organize into vascularized bone [J]. J Dent Res, 2017, 97(3)∶329-337 [18] Khan IM, Bishop JC, Gilbert S, et al. Clonal chondroprogenitors maintain telomerase activity and Sox9 expression during extended monolayer culture and retain chondrogenic potential [J]. Osteoarthritis Cartilage, 2009, 17(4)∶518-528 [19] Henson FM, Bowe EA, Davies ME. Promotion of the intrinsic damage-repair response in articular cartilage by fibroblastic growth factor-2 [J]. Osteoarthritis Cartilage, 2005, 13(6)∶537-544 [20] 周建新,杨晓斐,李阳,等.软骨前体细胞的分离鉴定及IL-1β对其成软骨分化的影响[J].中国修复重建外科杂志,2015,29(7)∶863-869 [21] Joos H, Wildner A, Hogrefe C, et al. Interleukin-1 beta and tumor necrosis factor alpha inhibit migration activity of chondrogenic progenitor cells from non-fibrillated osteoarthritic cartilage [J]. Arthritis Res Ther, 2013, 15(5)∶R119 [22] Jang KW, Ding L, Seol D, et al. Low-intensity pulsed ultrasound promotes chondrogenic progenitor cell migration via focal adhesion kinase pathway [J]. Ultrasound Med Biol, 2014, 40(6)∶1177-1186 [23] Seol D, Yu Y, Choe H, et al. Effect of short-term enzymatic treatment on cell migration and cartilage regeneration: in vitro organ culture of bovine articular cartilage [J]. Tissue engineering Part A, 2014, 20(13-14)∶1807-1814 [24] Levato R, Webb WR, Otto IA, et al. The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells [J]. Acta Biomater, 2017, 61∶41-53 [25] Yu Y, Brouillette MJ, Seol D, et al. Use of recombinant human stromal cell-derived factor 1alpha-loaded fibrin/hyaluronic acid hydrogel networks to achieve functional repair of full-thickness bovine articular cartilage via homing of chondrogenic progenitor cells [J]. Arthritis Rheumatol, 2015, 67(5)∶1274-1285 [26] Waller KA, Chin KE, Jay GD, et al. Intra-articular recombinant human proteoglycan 4 mitigates cartilage damage after destabilization of the medial meniscus in the Yucatan minipig [J]. Am J Sports Med, 2017, 45(7)∶1512-1521 [27] Caron MM, Emans PJ, Coolsen MM, et al. Redifferentiation of dedifferentiated human articular chondrocytes: comparison of 2D and 3D cultures [J]. Osteoarthritis Cartilage, 2012, 20(10)∶1170-1178 [28] Marcus P, De Bari C, Dell’Accio F, et al. Articular chondroprogenitor cells maintain chondrogenic potential but fail to form a functional matrix when implanted into muscles of SCID mice [J]. Cartilage, 2014, 5(4)∶231-240 |