[1] Cao Y, Sun Z, Liao L, et al. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo [J]. Biochem Biophys Res Commun, 2005, 332(2): 370-379. [2] Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies [J]. Tissue Eng, 2001, 7(2): 211-228. [3] Caviggioli F, Vinci V, Salval A, et al. Human adipose-derived stem cells: isolation, characterization and applications in surgery [J]. ANZ J Surg, 2009, 79(11): 856. [4] Zhu Y, Liu T, Song K, et al. Adipose-derived stem cell: a better stem cell than BMSC [J]. Cell Biochem Funct, 2008, 26(6): 664-675. [5] Lin Y, Liu L, Li Z, et al. Pluripotency potential of human adipose-derived stem cells marked with exogenous green fluorescent protein [J]. Mol Cell Biochem, 2006, 291(1-2): 1-10. [6] Fraser JK, Wulur I, Alfonso Z, et al. Fat tissue: an underappreciated source of stem cells for biotechnology [J]. Trends Biotechnol, 2006, 24(4): 150-154. [7] 陈龙,郭澍.脂肪干细胞成骨分化相关研究进展[J].中国实用口腔科杂志,2018,11(4): 246-249. [8] 周延华,郑海锋,曾庆鑫,等.高压氧对脂肪干细胞成骨分化的影响[J].中华航海医学与高气压医学杂志,2017,24(5):365-369. [9] 夏露,郭卫春.脉冲电磁场对脂肪干细胞成骨分化的影响[J].山东医药,2013, 53(38): 31-32. [10] 李玲慧,詹红生,丁道芳,等.左归丸、右归丸含药血清对大鼠脂肪干细胞成骨分化的影响[J].中医杂志,2013, 54(22): 1941-1944. [11] 李玲慧,詹红生,丁道芳,等.左归丸和右归丸对大鼠脂肪干细胞增殖及成骨分化影响的比较[J].中国骨质疏松杂志,2013,19(11): 1146-1151. [12] 黄敏红,梁至洁,梁一丹,等.人参皂苷Rg1促进脂肪干细胞体外增殖与成骨分化[J].中华实验外科杂志,2016,33(11): 2463-2468. [13] 马德彰,王喻,花卉,等.富血小板血浆通过调节细胞周期抑制蛋白p27促进大鼠脂肪干细胞成骨分化[J].中华实验外科杂志,2013,30(10): 2188-2190. [14] Tavakolinejad S, Khosravi M, Mashkani B, et al. The effect of human platelet-rich plasma on adipose-derived stem cell proliferation and osteogenic differentiation [J]. Iran Biomed J, 2014, 18(3): 151-157. [15] Fan J, Park H, Lee MK, et al. Adipose-derived stem cells and BMP-2 delivery in chitosan-based 3D constructs to enhance bone regeneration in a rat mandibular defect model [J]. Tissue Eng Part A, 2014, 20(15-16): 2169-2179. [16] 姜蔚然, 张晓, 刘云松,等.骨形态发生蛋白-2-磷酸钙共沉淀支架与人脂肪间充质干细胞构建新型组织工程化骨[J].北京大学学报(医学版), 2017, 49(1): 6-15. [17] Fang K, Wen S, Wang L, et al. Semaphorin 3A-modified adipose-derived stem cell sheet may improve osseointegration in a type 2 diabetes mellitus rat model [J]. Mol Med Rep, 2016, 14(3): 2449-2456. [18] Liu X, Tan N, Zhou Y, et al. Semaphorin 3A shifts adipose mesenchymal stem cells towards osteogenic phenotype and promotes bone regeneration in vivo [J]. Stem Cells Int, 2016, 2016:2545214. [19] 乔桥,宋应亮,李风兰.信号素3A刺激的干细胞膜片对2型糖尿病大鼠骨再生作用的研究[J].中华口腔医学杂志, 2018,53(5):333-338. [20] Vimalraj S, Selvamurugan N. MicroRNAs expression and their regulatory networks during mesenchymal stem cells differentiation toward osteoblasts [J]. Int J Biol Macromol, 2014, 66: 194-202. [21] Liu P, Mario B, Marco G, et al. Dicer ablation in osteoblasts by Runx2 driven cre-loxP recombination affects bone integrity, but not glucocorticoid-induced suppression of bone formation [J]. Sci Rep, 2016, 6: 32112. [22] Zhang ZJ, Zhang H, Kang Y, et al. miRNA expression profile during osteogenic differentiation of human adipose-derived stem cells [J]. J Cell Biochem, 2012, 113(3): 888-898. [23] Fan C, Jia L, Zheng Y, et al. MiR-34a promotes osteogenic differentiation of human adipose-derived stem cells via the RBP2/NOTCH1/CYCLIN D1 coregulatory network [J]. Stem Cell Reports, 2016, 7(2): 236-248. [24] Xie Q, Wei W, Ruan J, et al. Effects of miR-146a on the osteogenesis of adipose-derived mesenchymal stem cells and bone regeneration [J]. Sci Rep, 2017, 7: 42840. [25] Inose H, Ochi H, Kimura A, et al. A microRNA regulatory mechanism of osteoblast differentiation [J]. Proc Natl Acad Sci U S A, 2009, 106(49): 20794-20799. [26] Hu R, Liu W, Li H, et al. A Runx2/miR-3960/miR-2861 regulatory feedback loop during mouse osteoblast differentiation [J]. J Biol Chem, 2011, 286(14): 12328-12339. [27] Li H, Li T, Fan J, et al. miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway [J]. Cell Death Differ, 2015, 22(12): 1935-1945. [28] Hoseinzadeh S, Atashi A, Soleimani M, et al. MiR-221-inhibited adipose tissue-derived mesenchymal stem cells bioengineered in a nano-hydroxy apatite scaffold [J]. In Vitro Cell Dev Biol Anim, 2016, 52(4): 479-487. [29] Boufraqech M, Zhang L, Jain M, et al. miR-145 suppresses thyroid cancer growth and metastasis and targets AKT3 [J]. Endocr Relat Cancer, 2014, 21(4): 517-531. [30] Medrano S, Sequeira-Lopez ML, Gomez RAA. Deletion of the miR-143/145 cluster leads to hydronephrosis in mice [J]. Am J Pathol, 2014, 184(12): 3226-3238. [31] Ding W, Tan H, Zhao C, et al. MiR-145 suppresses cell proliferation and motility by inhibiting ROCK1 in hepatocellular carcinoma [J]. Tumor Biology, 2016, 37(5): 6255-6260. [32] Hao W, Liu H, Zhou L, et al. MiR-145 regulates osteogenic differentiation of human adipose-derived mesenchymal stem cells through targeting FoxO1 [J]. Exp Biol Med (Maywood), 2018, 243(4): 386-393. [33] Jia J, Tian Q, Ling S, et al. miR-145 suppresses osteogenic differentiation by targeting Sp7 [J]. FEBS Lett, 2013, 587(18): 3027-3031. [34] New SE, Alvarez-Gonzalez C, Vagaska B, et al. A matter of identity-Phenotype and differentiation potential of human somatic stem cells [J]. Stem Cell Res, 2015, 15(1): 1-13. |