[1] EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities [J]. Nat Rev Drug Discov, 2013, 12(5):347-357. [2] Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends [J]. J Cell Biol, 2013, 200(4):373-383. [3] Akers JC, Gonda D, Kim R, et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies [J]. J Neurooncol, 2013, 113(1):1-11. [4] Choi H, Lee DS. Illuminating the physiology of extracellular vesicles [J]. Stem Cell Res Ther, 2016, 7(1):55. [5] Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake [J]. Cell Mol Neurobiol, 2016, 36(3):301-312. [6] Becker A, Thakur BK, Weiss JM, et al. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis [J]. Cancer Cell, 2016, 30(6):836-848. [7] Adamiak M, Cheng G, Bobis-Wozowicz S, et al. Induced pluripotent stem cell (iPSC)-derived extracellular vesicles are safer and more effective for cardiac repair than iPSCs [J]. Circ Res, 2018, 122(2):296-309. [8] Armstrong JPK, Stevens MM. Strategic design of extracellular vesicle drug delivery systems [J]. Adv Drug Deliv Rev, 2018, 130:12-16. [9] Piffoux M, Silva AKA, Wilhelm C, et al. Modification of extracellular vesicles by fusion with liposomes for the design of personalized biogenic drug delivery systems [J]. ACS Nano, 2018, 12(7):6830-6842. [10] Tkach M, Théry C. Communication by extracellular vesicles: Where we are and where we need to go [J]. Cell, 2016, 164(6):1226-1232. [11] Saha B, Momen-Heravi F, Furi I, et al. Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90 [J]. Hepatology, 2018, 67(5):1986-2000. [12] Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes [J]. Proc Natl Acad Sci U S A, 2016, 113(8):E968-E977. [13] Chuo ST, Chien JC, Lai CP. Imaging extracellular vesicles: current and emerging methods [J]. J Biomed Sci, 2018, 25(1):91. [14] Gangadaran P, Hong CM, Ahn BC. Current perspectives on in vivo noninvasive tracking of extracellular vesicles with molecular imaging [J]. BioMed Res Int, 2017, 2017:9158319. [15] Gangadaran P, Hong CM, Ahn BC. An update on in vivo imaging of extracellular vesicles as drug delivery vehicles [J]. Front Pharmacol, 2018, 9:169. [16] Czernek L, Chworos A, Duechler M. The uptake of extracellular vesicles is affected by the differentiation status of myeloid cells [J]. Scand J Immunol, 2015, 82(6):506-514. [17] Christianson HC, Svensson KJ, van Kuppevelt TH, et al. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity [J]. Proc Natl Acad Sci U S A, 2013, 110(43):17380-17385. [18] Suetsugu A, Honma K, Saji S, et al. Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models [J]. Adv Drug Deliv Rev, 2013, 65(3):383-390. [19] Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells [J]. Nat Commun, 2011, 2:282. [20] Coleman SM, McGregor A. A bright future for bioluminescent imaging in viral research [J]. Future Virol, 2015, 10(2):169-183. [21] Zong S, Zong J, Chen C, et al. Single molecule localization imaging of exosomes using blinking silicon quantum dots [J]. Nanotechnology, 2018, 29(6):065705. [22] Bull E, Madani SY, Sheth R, et al. Stem cell tracking using iron oxide nanoparticles [J]. Int J Nanomedicine, 2014, 9:1641-1653. [23] Hu L, Wickline SA, Hood JL. Magnetic resonance imaging of melanoma exosomes in lymph nodes [J]. Magn Reson Med, 2015, 74(1):266-271. [24] Hwang DW, Choi H, Jang SC, et al. Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using 99mTc-HMPAO [J]. Sci Rep, 2015, 5:15636. [25] Smyth T, Kullberg M, Malik N, et al. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes [J]. J Control Release, 2015, 199:145-155. [26] Shen LM, Quan L, Liu J. Tracking exosomes in vitro and in vivo to elucidate their physiological functions: implications for diagnostic and therapeutic nanocarriers [J]. ACS Appl Nano Mater, 2018, 1(6):2438-2448. [27] Lai CP, Kim EY, Badr CE, et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters [J]. Nat Commun, 2015, 6:7029. [28] Zhao JY, Chen G, Gu YP, et al. Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles [J]. J Am Chem Soc, 2016, 138(6):1893-1903. [29] Yu ZL, Zhang W, Zhao JY, et al. Development of a dual-modally traceable nanoplatform for cancer theranostics using natural circulating cell-derived microparticles in oral cancer patients [J]. Advanced Functional Materials, 2017, 27(40):1703482 . [30] von Diezmann A, Shechtman Y, Moerner WE. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking [J]. Chem Rev, 2017, 117(11):7244-7275. [31] Shen H, Tauzin LJ, Baiyasi R, et al. Single particle tracking: from theory to biophysical applications [J]. Chem Rev, 2017, 117(11):7331-7376. [32] Yu J. Single-molecule studies in live cells [J]. Annu Rev Phys Chem, 2016, 67:565-585. |