[1] 于婉琦,周延民,赵静辉.口腔种植体新材料的研究现状[J].国际口腔医学杂志,2019,46(4): 488-496. [2] 魏芬绒,王海,金旭丹,等.生物医用钛合金材料及其应用 [J].世界有色金属,2018,494(2): 271-273. [3] 张文毓.低弹性模量钛合金的研究与应用 [J].船舶物资与市场,2019,(12): 11-16. [4] Leyens C, Peters M. Titanium and titanium alloys: fundamentals and applications [M]. Weinheim: Wiley-VCH, 2003: 4. [5] Banerjee D, Williams JC. Perspectives on titanium science and technology [J]. Acta Materialia, 2013, 61(3): 844-879. [6] Li P, Jia Y, Wang Y, et al. Effect of Fe addition on microstructure and mechanical properties of as-cast Ti49Ni51 alloy [J]. Materials (Basel), 2019, 12(19): 3114. [7] Im YD, Lee YK. Effects of Mo concentration on recrystallization texture, deformation mechanism and mechanical properties of Ti-Mo binary alloys [J]. J Alloy Compd, 2019, 821: 153508. [8] 赵丹妹.由EBM和SLM制备的钛合金材料的安全性能评价[D]. 中国食品药品检定研究院, 2017. [9] Weinmann M, Schnitter C, Stenzel M, et al. Development of bio-compatible refractory Ti/Nb(/Ta) alloys for application in patient-specific orthopaedic implants [J]. Int J Refract Metals Hard Mater, 2018, 75: 126-136. [10] 刘欣,张卫平.基于电子束熔融技术的椎间融合器金属骨小梁结构单元的研究[J]. 生命科学仪器, 2014, 12(6): 16-20. [11] Surmeneva MA, Koptyug A, Khrapov D, et al. In situ synthesis of a binary Ti-10at% Nb alloy by electron beam melting using a mixture of elemental niobium and titanium powders [J]. Journal of Materials Processing Technology, 2020, 282: 116646. [12] Rabadia C, Liu Y, Cao GH, et al. High-strength β stabilized Ti-Nb-Fe-Cr alloys with large plasticity [J]. Mater Sci Eng A Struct Mater, 2018, 732: 368-377. [13] Yemisci I, Mutlu O, Gulsoy N, et al. Experimentation and analysis of powder injection molded Ti10Nb10Zr alloy: a promising candidate for electrochemical and biomedical application [J]. Journal of Materials Research and Technology, 2019, 8(6): 5233-5245. [14] Zhang YS, Hu JJ, Zhang W, et al. Discontinuous core-shell structured Ti-25Nb-3Mo-3Zr-2Sn alloy with high strength and good plasticity [J]. Materials Characterization, 2019, 147: 127-130. [15] Zhang L, Tan J, He Z, et al. Effect of calcium pyrophosphate on microstructural evolution and in vitro biocompatibility of Ti-35Nb-7Zr composite by spark plasma sintering [J]. Mater Sci Eng C Mater Biol Appl, 2018, 90: 8-15. [16] 戴世娟,朱运田,陈锋.新型医用β钛合金研究的发展现状及加工方法 [J]. 重庆理工大学学报(自然科学), 2016, 30(4): 27-34. [17] Kuczyńska-Zemła D, Kijeńska-Gawrońska E, Chlanda A, et al. Biological properties of a novel β-Ti alloy with a low young’s modulus subjected to cold rolling [J]. Appl Surf Sci, 2020, 511: 145523. [18] 孙润根,张德闯,林建国.高压固溶处理对β钛合金微观结构与弹性模量的影响 [J]. 湘潭大学自然科学学报, 2018, 40(4): 7-10. [19] Ozan S, Lin J, Li Y, et al. Deformation mechanism and mechanical properties of a thermomechanically processed β Ti-28Nb-35.4Zr alloy [J]. J Mech Behav Biomed Mater, 2018, 78: 224-234. [20] 许艳飞,文璟,肖逸锋,等.双级时效对Ti-25Nb-10Ta-1Zr-0.2Fe医用β钛合金显微组织与力学性能的影响 [J]. 中国有色金属学报, 2016, 26(9): 1912-1918. [21] Kyong MK, Hee YK, Shuichi M. Effect of Zr content on phase stability, deformation behavior, and Young's modulus in Ti-Nb-Zr alloys [J]. Materials, 2020, 13(2): 476. [22] Chen S, Wu J, Tu J, et al. Enhanced plasticity in a Ti-Ni-Nb-Zr shape memory bulk metallic glass composite with high Nb addition [J]. Mater Sci Eng A Struct Mater, 2017, 704: 192-198. [23] Jiang B, Wang Q, Wen D, et al. Effects of Nb and Zr on structural stabilities of Ti-Mo-Sn-based alloys with low modulus [J]. Mater Sci Eng A Struct Mater, 2017, 687: 1-7. [24] Shiraishi T, Yubuta K, Shishido T, et al. Elastic properties of as-solidified Ti-Zr binary alloys for biomedical applications [J]. Materials Transactions, 2016, 57(12): 1986-1992. [25] Yang K, Wang J, Tang H, et al. Additive manufacturing of in-situ reinforced Ti-35Nb-5Ta-7Zr (TNTZ) alloy by selective electron beam melting (SEBM) [J]. J Alloys Compd, 2020, 826: 154178. [26] 郭顺,郑琦,张俊松,等.低弹性模量亚稳β型Ti-38Nb合金的微观组织与力学行为 [J].稀有金属,2015,39(9): 769-774. [27] 沈睿,陈锋,余新泉,等.氧含量对Ti-35Nb-3.7Zr-1.3Mo-xO合金组织与力学性能的影响 [J].东南大学学报:自然科学版,2015,45(3): 478-483. [28] Nunes AR, Borborema S, Araújo LS, et al. Influence of thermo-mechanical processing on structure and mechanical properties of a new metastable β Ti-29Nb-2Mo-6Zr alloy with low Young’s modulus [J]. J Alloys Compd, 2020, 820: 153078. [29] Lee T, Lee S, Kim I, et al. Breaking the limit of Young’s modulus in low-cost Ti-Nb-Zr alloy for biomedical implant applications [J]. J Alloys Compd, 2020, 828: 154401. [30] Fojt J, Joska L, Malek J, et al. Corrosion behavior of Ti-39Nb alloy for dentistry [J]. Mater Sci Eng C Mater Biol Appl, 2015, 56: 532-537. [31] Jawed SF, Rabadia CD, Liu Y, et al. Strengthening mechanism and corrosion resistance of beta-type Ti-Nb-Zr-Mn alloys [J]. Mater Sci Eng C Mater Biol Appl, 2020, 110: 110728. [32] Kumar GL, Chinara S, Das S, et al. Studies on Ti-29Nb-13Ta-4.6Zr alloy for use as a prospective biomaterial [J]. Materials Today: Proceedings, 2019, 15: 11-20. [33] 温科,李风兰.近β钛合金TLM表面双层辉光等离子渗氮及其腐蚀性能研究 [J]. 真空科学与技术学报, 2016, 36(2): 193-198. [34] Raducanu D, Vasilescu E, Cojocaru VD, et al. Mechanical and corrosion resistance of a new nanostructured Ti-Zr-Ta-Nb alloy [J]. J Mech Behav Biomed Mater, 2011, 4(7): 1421-1430. [35] Gill P, Munroe N, Pulletikurthi C, et al. Effect of manufacturing process on the biocompatibility and mechanical properties of Ti-30Ta alloy [J]. J Mater Eng Perform, 2011, 20(4): 819-823. [36] Zhang Y, Chu K, He S, et al. Fabrication of high strength, antibacterial and biocompatible Ti-5Mo-5Ag alloy for medical and surgical implant applications [J]. Mater Sci Eng C Mater Biol Appl, 2020, 106: 110165. [37] De Andrade DP, De Vasconcellos LM, Carvalho IC, et al. Titanium-35niobium alloy as a potential material for biomedical implants: In vitro study [J]. Mater Sci Eng C Mater Biol Appl, 2015, 56: 538-544. [38] 段永刚,丁英奇,张龙,等.新型β钛合金Ti35Nb3Zr2Ta在人工关节假体应用中的生物相容性 [J].中国组织工程研究,2015,19(34): 5536-5540. [39] 孙钰.新型低弹性模量钛合金TiNbZrTaSi生物相容性及骨整合能力实验研究[D].吉林大学, 2016. [40] Meng X, Wang X, Guo Y, et al. Biocompatibility evaluation of a newly developed Ti-Nb-Zr-Ta-Si alloy implant [J]. J Biomater Tissue Eng, 2016, 6(11): 861-869. [41] Zhang Y, Guo T, Li Q, et al. Novel ultrafine-grained β-type Ti-28Nb-2Zr-8Sn alloy for biomedical applications [J]. J Biomed Mater Res A, 2019, 107(8): 1628-1639. [42] Wang Y, Wen C, Hodgson P, et al. Biocompatibility of TiO2 nanotubes with different topographies [J]. J Biomed Mater Res A, 2014, 102(3): 743-751. [43] Qadir MB, Lin J, Biesiekierski A, et al. Effect of anodized TiO2-Nb2O5-ZrO2 nanotubes with different nanoscale dimensions on the biocompatibility of a Ti35Zr28Nb alloy [J]. ACS Appl Mater Interfaces, 2020, 12(5): 6776-6787. [44] Hu J, Zhong X, Fu X. Enhanced bone remodeling effects of low-modulus Ti-5Zr-3Sn-5Mo-25Nb alloy implanted in the mandible of beagle dogs under delayed loading[J]. ACS Omega, 2019, 4(20): 18653-18662. [45] Lario J, Amigo A, Segovia F, et al. Surface modification of Ti-35Nb-10Ta-1.5Fe by the double acid-etching process [J]. Materials (Basel), 2018, 11(4): 494. [46] Gu H, Ding Z, Yang Z, et al. Microstructure evolution and electrochemical properties of TiO2/Ti-35Nb-2Ta-3Zr micro/nano-composites fabricated by friction stir processing [J]. Mater Des, 2019, 169: 107680. [47] Wu H, Xie L, He M, et al. A wear-resistant TiO nanoceramic coating on titanium implants for visible-light photocatalytic removal of organic residues [J]. Acta Biomater, 2019, 97: 597-607. [48] Kheradmandfard M, Kashani-Bozorg SF, Lee JS, et al. Significant improvement in cell adhesion and wear resistance of biomedical β-type titanium alloy through ultrasonic nanocrystal surface modification [J]. J Alloys Compd, 2018, 762: 941-949. |