[1] 董美銮.环氧树脂陶瓷涂层与天然牙本质结合性能的研究[D].华北理工大学,2019. [2] Abaszadeh M, Mohammadi M, Mohammadzadeh I. Biocompatibility of a new antibacterial compound and its effect on the mechanical properties of flowable dental composites (animal study) [J]. J Dent (Shiraz), 2020, 21(1):56-62. [3] 中国国家标准化管理委员会.医疗器械生物学评价第12部分:样品制备与参照样品:GB/T 16886.12-2005[S].北京:标准出版社,2005. [4] Li RY, Liu ZG, Liu HQ, et al. Evaluation of biocompatibility and toxicity of biodegradable poly (DL-lactic acid) films[J]. Am J Transl Res, 2015, 7(8):1357-1370. [5] 中国国家标准化管理委员会.医疗器械生物学评价第10部分:刺激与迟发型超敏反应试验:GB/T 16886.10-2015[S].北京:标准出版社,2015. [6] Liao C, Li Y, Tjong SC. Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity[J]. Int J Mol Sci, 2018, 19(11):3564. [7] Ho YH, Man K, Joshi SS, et al. In-vitro biomineralization and biocompatibility of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites [J]. Bioact Mater, 2020, 5(4):891-901. [8] Sun T, Liu R, Liu X, et al. The biocompatibility of dental graded nano-glass-zirconia material after aging [J]. Nanoscale Res Lett, 2018, 13(1):61. [9] Xi Z, Wu Y, Xiang S, et al. Corrosion resistance and biocompatibility assessment of a biodegradable hydrothermal-coated Mg-Zn-Ca alloy: An in vitro and in vivo study[J]. ACS Omega, 2020, 5(9):4548-4557. [10] 颜丽惠.反复熔铸对非镍基烤瓷合金溶血性能及口腔粘膜刺激性影响的研究[D].福建医科大学,2014. |