口腔医学研究 ›› 2024, Vol. 40 ›› Issue (6): 550-554.DOI: 10.13701/j.cnki.kqyxyj.2024.06.014

• 口腔影像学研究 • 上一篇    下一篇

比较Mask-RCNN与Mimics在上颌窦建模中的应用

王蓉1, 帕克扎提·色依提2, 王铁梅2*, 张懿3, 钱堃3   

  1. 1.海军军医大学第一附属医院 上海长海医院口腔科 上海 200433;
    2.南京大学医学院附属口腔医院 南京市口腔医院南京大学口腔医学研究所 口腔颌面医学影像科 江苏 南京 2100083.东南大学 自动化学院 江苏 南京 210008
  • 收稿日期:2023-12-20 出版日期:2024-06-28 发布日期:2024-06-19
  • 通讯作者: * 王铁梅,E-mail:tiemei106@263.net
  • 作者简介:王蓉(1992~ ),女,安徽马鞍山人,硕士,医师,研究方向:口腔颌面影像。
  • 基金资助:
    江苏省自然科学基金面上项目(编号:BK20150089)

Application of Mask-RCNN and Mimics in Maxillary Sinus Modeling

WANG Rong1, Pakezhati·SEYITI2, WANG Tiemei2*, ZHANG Yi3, QIAN Kun3   

  1. 1. Department of Stomatology, The First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China;
    2. Department of Radiology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology Nanjing University, Nanjing 210008, China;
    3. Department of Automation, Dongnan University, Nanjing 210008, China
  • Received:2023-12-20 Online:2024-06-28 Published:2024-06-19

摘要: 目的:比较Mask-RCNN深度学习模型与Mimics三维软件在上颌窦建模中的应用。方法:应用Mask-RCNN及Mimics对纳入的50例患者锥形束CT影像资料进行上颌窦重建并测量上颌窦体积,比较两者重建的效果并对上颌窦体积进行数据分析。结果:在上颌窦建模过程中,应用Mask-RCNN对上颌窦进行图像分割、后处理及重建仅需30余秒,使用Mimics对每例患者上颌窦图像进行手动阈值分割后重建需数十分钟;两者测量的上颌窦体积无显著性差异(P>0.05)。结论:Mask-RCNN深度学习算法优于Mimics,可以更快速准确的重建上颌窦,体现了人工智能在口腔颌面医学影像学领域的辅助诊断价值。

关键词: 人工智能, 实例分割, 锥形束CT, 三维重建, 上颌窦体积

Abstract: Objective: To compare the application of Mask RCNN deep learning model and Mimics 3D software in maxillary sinus modeling. Methods: Mask-RCNN and Mimics were applied to reconstruct the maxillary sinus and measure the volume of maxillary sinus from conical beam CT images in 50 patients included. The reconstruction effects of the two methods were compared, and the volume of the maxillary sinus was analyzed. Results: In the process of modeling the maxillary sinus, using Mask-RCNN for image segmentation, post-processing, and reconstruction only took more than 30 seconds, and using Mimics for manual threshold segmentation and reconstruction of maxillary sinus images for each patient took about tens of minutes. There was no significant difference in the volume of the maxillary sinus measured between two methods (P>0.05). Conclusion: The Mask RCNN deep learning algorithm is superior to Mimics and can reconstruct the maxillary sinus more quickly and accurately, reflecting the auxiliary diagnostic value of artificial intelligence in the field of oral and maxillofacial medical imaging.

Key words: artificial intelligence, image segmentation, cone-beam computed tomography, three-dimensional reconstruction, maxillary sinus volume