[1] Brookes ZLS, Bescos R, Belfield LA, et al. Current uses of chlorhexidine for management of oral disease: a narrative review [J]. J Dent, 2020, 103: 103497. [2] Singh P, Arshad Z, Srivastava VK, et al. Efficacy of oral care protocols in the prevention of ventilator-associated pneumonia in mechanically ventilated patients [J]. Cureus, 2022, 14(4): e23750. [3] Ruksakiet K, Hanák L, Farkas N, et al. Antimicrobial efficacy of chlorhexidine and sodium hypochlorite in root canal disinfection: A systematic review and meta-analysis of randomized controlled Trials [J]. J Endod, 2020, 46(8): 1032-1041.e1037. [4] Hardy K, Sunnucks K, Gil H, et al. Increased usage of antiseptics is associated with reduced susceptibility in clinical isolates of staphylococcus aureus [J]. mBio, 2018, 9(3): e00894-18. [5] Wand ME, Bock LJ, Bonney LC, et al. Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of klebsiella pneumoniae clinical isolates to chlorhexidine [J]. Antimicrob Agents Chemother, 2017, 61(1): e01162-16. [6] 石士艺,郑相阔,张晓亚,等.临床常见分离菌对葡萄糖酸氯己定的耐药性及感染患者的临床特征[J].中华传染病杂志,2021,39(9): 519-523. [7] Peng X, Cheng L, You Y, et al. Oral microbiota in human systematic diseases [J]. Int J Oral Sci, 2022, 14(1): 14. [8] Brooks L, Narvekar U, McDonald A, et al. Prevalence of antibiotic resistance genes in the oral cavity and mobile genetic elements that disseminate antimicrobial resistance: A systematic review [J]. Mol Oral Microbiol, 2022, 37(4): 133-153. [9] 叶青,成于珈,林丽开.国内外微生物对消毒剂抗性研究热点和发展趋势的可视化分析[J].中华传染病杂志,2020,38(9): 556-563. [10] Cieplik F, Jakubovics NS, Buchalla W, et al. Resistance toward chlorhexidine in oral bacteria-is there cause for concern? [J]. Front Microbiol, 2019, 10: 587. [11] Lescat M, Magnan M, Kenmoe S, et al. Co-lateral effect of octenidine, chlorhexidine and colistin selective pressures on four enterobacterial species: A comparative genomic analysis [J]. Antibiotics (Basel), 2021, 11(1): 50. [12] Kulik EM, Waltimo T, Weiger R, et al. Development of resistance of mutans streptococci and Porphyromonas gingivalis to chlorhexidine digluconate and amine fluoride/stannous fluoride-containing mouthrinses, in vitro [J]. Clin Oral Investig, 2015, 19(6): 1547-1553. [13] Auer DL, Mao X, Anderson AC, et al. Phenotypic adaptation to antiseptics and effects on biofilm formation capacity and antibiotic resistance in clinical isolates of early colonizers in dental plaque [J]. Antibiotics (Basel), 2022, 11(5): 688. [14] Kaspar JR, Godwin MJ, Velsko IM, et al. Spontaneously arising Streptococcus mutans variants with reduced susceptibility to chlorhexidine display genetic defects and diminished fitness [J]. Antimicrob Agents Chemother, 2019, 63(7): e00161-19. [15] Huang S, Wu M, Li Y, et al. The dlt operon contributes to the resistance to chlorhexidine in Streptococcus mutans [J]. Int J Antimicrob Agents, 2022, 59(3): 106540. [16] Kitagawa H, Izutani N, Kitagawa R, et al. Evolution of resistance to cationic biocides in Streptococcus mutans and Enterococcus faecalis [J]. J Dent, 2016, 47: 18-22. [17] Verspecht T, Rodriguez Herrero E, Khodaparast L, et al. Development of antiseptic adaptation and cross-adapatation in selected oral pathogens in vitro [J]. Sci Rep, 2019, 9(1): 8326. [18] Reda B, Hollemeyer K, Trautmann S, et al. First insights into chlorhexidine retention in the oral cavity after application of different regimens [J]. Clin Oral Investig, 2021, 25(11): 6109-6118. [19] Abbood HM, Hijazi K, Gould IM. Chlorhexidine resistance or cross-resistance, that is the question [J]. Antibiotics (Basel), 2023, 12(5): 798. [20] Henderson PJF, Maher C, Elbourne LDH, et al. Physiological functions of bacterial "multidrug" efflux pumps [J]. Chem Rev, 2021, 121(9): 5417-5478. [21] Wang JQ, Wu ZX, Yang Y, et al. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates [J]. J Evid Based Med, 2021, 14(3): 232-256. [22] Sobhanipoor MH, Ahmadrajabi R, Nave HH, et al. Reduced susceptibility to biocides among enterococci from clinical and non-clinical sources [J]. Infect Chemother, 2021, 53(4): 696-704. [23] Kornelsen V, Kumar A. Update on multidrug resistance efflux pumps in acinetobacter spp [J]. Antimicrob Agents Chemother, 2021, 65(7): e0051421. [24] Longtin J, Seah C, Siebert K, et al. Distribution of antiseptic resistance genes qacA, qacB, and smr in methicillin-resistant Staphylococcus aureus isolated in Toronto, Canada, from 2005 to 2009 [J]. Antimicrob Agents Chemother, 2011, 55(6): 2999-3001. [25] Batra R, Cooper BS, Whiteley C, et al. Efficacy and limitation of a chlorhexidine-based decolonization strategy in preventing transmission of methicillin-resistant Staphylococcus aureus in an intensive care unit [J]. Clin Infect Dis, 2010, 50(2): 210-217. [26] Zhang C, Liang B, Xiong Z, et al. Distribution of biocide resistance genes and association with clonal complex genotypes in staphylococcus aureus isolated from school-age children in Guangzhou [J]. Infect Drug Resist, 2022, 15: 7165-7175. [27] Wand ME, Jamshidi S, Bock LJ, et al. SmvA is an important efflux pump for cationic biocides in Klebsiella pneumoniae and other Enterobacteriaceae [J]. Sci Rep, 2019, 9(1): 1344. [28] Fernández-Cuenca F, Tomás M, Caballero-Moyano FJ, et al. Reduced susceptibility to biocides in Acinetobacter baumannii: association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps [J]. J Antimicrob Chemother, 2015, 70(12): 3222-3229. [29] Rajamohan G, Srinivasan VB, Gebreyes WA. Molecular and functional characterization of a novel efflux pump, AmvA, mediating antimicrobial and disinfectant resistance in Acinetobacter baumannii [J]. J Antimicrob Chemother, 2010, 65(9): 1919-1925. [30] Royer G, Ortiz de la Rosa JM, Vuillemin X, et al. Reduced chlorhexidine susceptibility is associated with tetracycline resistance tet genes in clinical isolates of escherichia coli [J]. Antimicrob Agents Chemother, 2022, 66(3): e0197221. [31] Gaurav A, Bakht P, Saini M, et al. Role of bacterial efflux pumps in antibiotic resistance, virulence, and strategies to discover novel efflux pump inhibitors [J]. Microbiology (Reading), 2023, 169(5): 001333. [32] Wassenaar TM, Ussery D, Nielsen LN, et al. Review and phylogenetic analysis of qac genes that reduce susceptibility to quaternary ammonium compounds in Staphylococcus species [J]. Eur J Microbiol Immunol (Bp), 2015, 5(1): 44-61. [33] McNeil JC, Hulten KG, Kaplan SL, et al. Decreased susceptibilities to retapamulin, mupirocin, and chlorhexidine among staphylococcus aureus isolates causing skin and soft tissue infections in otherwise healthy children [J]. Antimicrob Agents Chemother, 2014, 58(5): 2878-2883. [34] Abuzaid A, Hamouda A, Amyes SG. Klebsiella pneumoniae susceptibility to biocides and its association with cepA, qacΔE and qacE efflux pump genes and antibiotic resistance [J]. J Hosp Infect, 2012, 81(2): 87-91. [35] 张艺之,张秀彩,张思琴,等.耐醋酸氯己定肺炎克雷伯菌的耐药机制及分子流行病学研究[J].中华微生物学和免疫学杂志, 2019, 39(3): 202-207. [36] Srinivasan VB, Rajamohan G. Kpn EF, a new member of the Klebsiella pneumoniae cell envelope stress response regulon, is an SMR-type efflux pump involved in broad-spectrum antimicrobial resistance [J]. Antimicrob Agents Chemother, 2013, 57(9): 4449-4462. [37] Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps [J]. Biochim Biophys Acta, 2009, 1794(5): 769-781. [38] Hassan KA, Jackson SM, Penesyan A, et al. Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins [J]. Proc Natl Acad Sci U S A, 2013, 110(50): 20254-20259. [39] Fraud S, Campigotto AJ, Chen Z, et al. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor [J]. Antimicrob Agents Chemother, 2008, 52(12): 4478-4482. [40] Hassan KA, Liu Q, Elbourne LDH, et al. Pacing across the membrane: the novel PACE family of efflux pumps is widespread in Gram-negative pathogens [J]. Res Microbiol, 2018, 169(7-8): 450-454. [41] Du J, Huang S, Wu M, et al. Dlt operon regulates physiological function and cariogenic virulence in Streptococcus mutans [J]. Future Microbiol, 2023, 18: 225-233. [42] Schultz BJ, Snow ED, Walker S. Mechanism of dalanine transfer to teichoic acids shows how bacteria acylate cell envelope polymers [J]. Nat Microbiol, 2023, 8(7): 1318-1329. |