[1] Li Y, Liu C. Nanomaterial-based bone regeneration [J]. Nanoscale, 2017, 9(15): 4862-4874. [2] Shi M, Wang C, Wang Y, et al. Deproteinized bovine bone matrix induces osteoblast differentiation via macrophage polarization [J]. J Biomed Mater Res A, 2018, 106(5): 1236-1246. [3] Chen Z, Mao X, Tan L, et al. Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate [J]. Biomaterials, 2014, 35(30): 8553-8565. [4] Schlundt C, Fischer H, Bucher CH, et al. The multifaceted roles of macrophages in bone regeneration: A story of polarization, activation and time [J]. Acta Biomater, 2021, 133: 46-57. [5] Chang J, Wang Z, Tang E, et al. Inhibition of osteoblastic bone formation by nuclear factor-kappaB [J]. Nat Med, 2009, 15(6): 682-689. [6] Lee J, Byun H, Madhurakkat Perikamana SK, et al. Current advances in immunomodulatory biomaterials for bone regeneration [J]. Adv Healthc Mater, 2019, 8(4):e1801106. [7] Mahon OR, Browe DC, Gonzalez-Fernandez T, et al. Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner [J]. Biomaterials, 2020, 239:119833. [8] Qiu P, Li M, Chen K, et al. Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis [J]. Biomaterials, 2020, 227:119552. [9] Zhang W, Zhao F, Huang D, et al. Strontium-substituted submicrometer bioactive glasses modulate macrophage responses for improved bone regeneration [J]. ACS Appl Mater Interfaces, 2016, 8(45): 30747-30758. [10] Toita R, Sunarso, Rashid AN, et al. Modulation of the osteoconductive property and immune response of poly(ether ether ketone) by modification with calcium ions [J]. J Mater Chem B, 2015, 3(44): 8738-8746. [11] Lee CH, Kim YJ, Jang JH, et al. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces [J]. Nanotechnology, 2016, 27(8):085101. [12] Choi SM, Park JW. Multifunctional effects of a modification of SLA titanium implant surface with strontium-containing nanostructures on immunoinflammatory and osteogenic cell function [J]. J Biomed Mater Res A, 2018, 106(12): 3009-3020. [13] Xu A, Xie Y, Xu J, et al. Effects of strontium-incorporated micro/nano rough titanium surfaces on osseointegration via modulating polarization of macrophages [J]. Colloids Surf B Biointerfaces, 2021, 207:111992. [14] Li J, Wen J, Li B, et al. Valence state manipulation of cerium oxide nanoparticles on a Titanium surface for modulating cell fate and bone formation [J]. Adv Sci (Weinh), 2018, 5(2):1700678. [15] Lv L, Xie Y, Li K, et al. Unveiling the mechanism of surface hydrophilicity-modulated macrophage polarization [J]. Adv Healthc Mater, 2018, 7(19):e1800675. [16] Ni S, Zhai D, Huan Z, et al. Nanosized concave pit/convex dot microarray for immunomodulatory osteogenesis and angiogenesis [J]. Nanoscale, 2020, 12(31): 16474-16488. [17] Zhang T, Jiang M, Yin X, et al. The role of autophagy in the process of osseointegration around titanium implants with micro-nano topography promoted by osteoimmunity [J]. Sci Rep, 2021, 11(1):18418. [18] Yang Y, Zhang T, Jiang M, et al. Effect of the immune responses induced by implants in a integrated three-dimensional micro-nano topography on osseointegration [J]. J Biomed Mater Res A, 2021, 109(8): 1429-1440. [19] Bai L, Du Z, Du J, et al. A multifaceted coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards ameliorative osseointegration [J]. Biomaterials, 2018, 162: 154-169. [20] Yang C, Zhao C, Wang X, et al. Stimulation of osteogenesis and angiogenesis by micro/nano hierarchical hydroxyapatite via macrophage immunomodulation [J]. Nanoscale, 2019, 11(38): 17699-17708. [21] Chen B, You Y, Ma A, et al. Zn-incorporated TiO2 nanotube surface improves osteogenesis ability through influencing immunomodulatory function of macrophages [J]. Int J Nanomedicine, 2020, 15: 2095-2118. [22] Mcwhorter FY, Wang T, Nguyen P, et al. Modulation of macrophage phenotype by cell shape [J]. Proc Natl Acad Sci U S A, 2013, 110(43): 17253-17258. [23] Pan H, Xie Y, Zhang Z, et al. Immunomodulation effect of a hierarchical macropore/nanosurface on osteogenesis and angiogenesis [J]. Biomed Mater, 2017, 12(4):045006. [24] Jin SS, He DQ, Luo D, et al. A biomimetic hierarchical nanointerface orchestrates macrophage polarization and mesenchymal stem cell recruitment to promote endogenous bone regeneration [J]. ACS Nano, 2019, 13(6): 6581-6595. [25] Bai L, Liu Y, Du Z, et al. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration [J]. Acta Biomater, 2018, 76: 344-358. [26] Bai L, Chen P, Zhao Y, et al. A micro/nano-biomimetic coating on titanium orchestrates osteo/angio-genesis and osteoimmunomodulation for advanced osseointegration [J]. Biomaterials, 2021, 278:121162. [27] Ma QL, Fang L, Jiang N, et al. Bone mesenchymal stem cell secretion of sRANKL/OPG/M-CSF in response to macrophage-mediated inflammatory response influences osteogenesis on nanostructured Ti surfaces [J]. Biomaterials, 2018, 154: 234-247. [28] Gu W, Wu C, Chen J, et al. Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration [J]. Int J Nanomedicine, 2013, 8: 2305-2317. [29] Hu Z, Ma C, Rong X, et al. Immunomodulatory ECM-like microspheres for accelerated bone regeneration in diabetes mellitus [J]. ACS Appl Mater Interfaces, 2018, 10(3): 2377-2390. [30] Wei F, Zhou Y, Wang J, et al. The immunomodulatory role of BMP-2 on macrophages to accelerate osteogenesis [J]. Tissue Eng Part A, 2018, 24(7-8): 584-594. [31] Park SY, Kim KH, Kim S, et al. BMP-2 gene delivery-based bone regeneration in dentistry [J]. Pharmaceutics, 2019, 11(8):393. [32] Wei F, Li M, Crawford R, et al. Exosome-integrated titanium oxide nanotubes for targeted bone regeneration [J]. Acta Biomater, 2019, 86: 480-492. [33] Shao N, Guan Y, Liu S, et al. A multi-functional silicon nanoparticle designed for enhanced osteoblast calcification and related combination therapy [J]. Macromol Biosci, 2019, 19(12):e1900255. [34] Alhamdi JR, Peng T, Al-Naggar IM, et al. Controlled M1-to-M2 transition of aged macrophages by calcium phosphate coatings [J]. Biomaterials, 2019, 196: 90-99. [35] Yin C, Zhao Q, Li W, et al. Biomimetic anti-inflammatory nano-capsule serves as a cytokine blocker and M2 polarization inducer for bone tissue repair [J]. Acta Biomater, 2020, 102: 416-426. [36] Chen Y, Guan M, Ren R, et al. Improved immunoregulation of ultra-low-dose silver nanoparticle-loaded TiO2 nanotubes via M2 macrophage polarization by regulating GLUT1 and autophagy [J]. Int J Nanomedicine, 2020, 15: 2011-2026. [37] Wang W, Xiong Y, Zhao R, et al. A novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through osteoimmunomodulation [J]. J Nanobiotechnology, 2022, 20(1):68. [38] Huang Q, Ouyang Z, Tan Y, et al. Activating macrophages for enhanced osteogenic and bactericidal performance by Cu ion release from micro/nano-topographical coating on a titanium substrate [J]. Acta Biomater, 2019, 100: 415-426. [39] Li D, Li Y, Shrestha A, et al. Effects of programmed local delivery from a micro/nano-hierarchical surface on Titanium implant on infection clearance and osteogenic induction in an infected bone defect [J]. Adv Healthc Mater, 2019, 8(11):e1900002. |