[1] Xu DP, Qu WD, Sun C, et al. A study on environmental factors for nonsyndromic cleft lip and/or palate[J]. J Craniofac Surg, 2018, 29(2): 364-367. [2] Roth DM, Bayona F, Baddam P, et al. Craniofacial development: Neural crest in molecular embryology [J]. Head Neck Pathol, 2021, 15(1): 1-15. [3] Schock EN, Brugmann SA. Discovery, diagnosis, and etiology of craniofacial ciliopathies [J]. Cold Spring Harb Perspect Biol, 2017, 9(9): a028258. [4] Ma R, Kutchy NA, Chen L, et al. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders [J]. Neurobiol Dis, 2022, 163: 105607. [5] Pakvasa M, Haravu P, Boachie-Mensah M, et al. Notch signaling: Its essential roles in bone and craniofacial development [J]. Genes Dis, 2020, 8(1): 8-24. [6] Barba A, Urbina C, Maili L, et al. Association of IFT88 gene variants with nonsyndromic cleft lip with or without cleft palate [J]. Birth Defects Res, 2019, 111(11): 659-665. [7] Tian H, Feng J, Li J, et al. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate [J]. Hum Mol Genet, 2017, 26(5): 860-872. [8] Zheng NX, Miao YT, Zhang X, et al. Primary cilia-associated protein IFT172 in ciliopathies [J]. Front Cell Dev Biol, 2023, 11: 1074880. [9] Bujakowska KM, Zhang Q, Siemiatkowska AM, et al. Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome [J]. Hum Mol Genet, 2015, 24(1): 230-242. [10] Pruski M, Hu L, Yang C, et al. Roles for IFT172 and primary cilia in cell migration, cell division, and neocortex development [J]. ront Cell Dev Biol, 2019, 7: 287. [11] Askarian S, Gholami M, Khalili-Tanha G, et al. The genetic factors contributing to the risk of cleft lip-cleft palate and their clinical utility [J]. Oral Maxillofac Surg, 2023, 27(2): 177-186. [12] Wattanawong K, Rattanasiri S, McEvoy M, et al. Association between IRF6 and 8q24 polymorphisms and nonsyndromic cleft lip with or without cleft palate: Systematic review and meta-analysis [J]. Birth Defects Res A Clin Mol Teratol, 2016, 106(9): 773-788. [13] de Araujo TK, Secolin R, Félix TM, et al. A multicentric association study between 39 genes and nonsyndromic cleft lip and palate in a Brazilian population [J]. J Craniomaxillofac Surg, 2016, 44(1): 16-20. [14] Yan C, Deng-Qi H, Li-Ya C, et al. Transforming growth factor alpha taq Ⅰ polymorphisms and nonsyndromic cleft lip and/or palate risk: A meta-analysis [J]. Cleft Palate Craniofac J, 2018, 55(6): 814-820. [15] Shi M, Mostowska A, Jugessur A, et al. Identification of microdeletions in candidate genes for cleft lip and/or palate [J]. Birth Defects Res A Clin Mol Teratol, 2009, 85(1): 42-51. [16] Ingham PW, McMahon AP. Hedgehog signaling in animal development: paradigms and principles [J]. Genes Dev, 2001, 15(23): 3059-3087. [17] Friedland-Little JM, Hoffmann AD, Ocbina PJR, et al. A novel murine allele of Intraflagellar Transport Protein 172 causes a syndrome including VACTERL-like features with hydrocephalus [J]. Hum Mol Genet, 2011, 20(19): 3725-3737. [18] Ocbina PJ, Tuson M, Anderson K. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo [J]. PLoS One, 2009, 4(8):e6839. [19] Corbit KC, Shyer AE, Dowdle WE, et al. Kif3a constrains β-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms [J]. Nat Cell Biol, 2008, 10(1): 70-76. [20] Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer [J]. Nat Rev Mol Cell Biol, 2017, 18(5): 299-314. [21] Shi L, Liang Y, Yang L, et al. All-trans retinoic acid regulates miR-106a-5p inhibition of autophagic in developing cleft palates [EB]. bioRxiv, 2020. |