[1] Huang C, Sanaei F, Verdurmen WPR, et al. The application of organs-on-a-chip in dental, oral, and craniofacial research[J]. J Dent Res, 2023, 102(4): 364-375. [2] Gao X, Wu Y, Liao L, et al. Oral organoids: Progress and challenges[J]. J Dent Res, 2021, 100(5): 454-463. [3] Ingber DE. Human organs-on-chips for disease modelling, drug development and personalized medicine[J]. Nat Rev Genet, 2022, 23(8): 467-491. [4] Farshidfar N, Assar S, Amiri MA, et al. The feasible application of microfluidic tissue/organ-on-a-chip as an impersonator of oral tissues and organs: a direction for future research[J]. Biodes Manuf, 2023, 6(4): 478-506. [5] Pierfelice TV, D'amico E, Petrini M, et al. A systematic review on organ-on-a-chip in pdms or hydrogel in dentistry: An update of the literature[J]. Gels, 2024, 10(2): 102. [6] Karamanos NK, Theocharis AD, Piperigkou Z, et al. A guide to the composition and functions of the extracellular matrix[J]. FEBS J, 2021, 288(24): 6850-6912. [7] Jalali F, Ellett F, Balani P, et al. No man's land: Species-specific formation of exclusion zones bordering Actinomyces graevenitzii microcolonies in nanoliter cultures[J]. Microbiologyopen, 2021, 10(1): e1137. [8] França CM, Tahayeri A, Rodrigues NS, et al. The tooth on-a-chip: a microphysiologic model system mimicking the biologic interface of the tooth with biomaterials[J]. Lab Chip, 2020, 20(2): 405-413. [9] Tang PC, Eriksson O, Sjögren J, et al. A microfluidic chip for studies of the dynamics of antibiotic resistance selection in bacterial biofilms[J]. Front Cell Infect Microbiol, 2022, 12:896149. [10] Zhang H, Li L, Wang S, et al. Construction of dentin-on-a-chip based on microfluidic technology and tissue engineering[J]. J Dent, 2024, 146:105028. [11] Rodrigues NS, França CM, Tahayeri A, et al. Biomaterial and biofilm interactions with the pulp-dentin complex-on-a-chip[J]. J Dent Res, 2021, 100(10):1136-1143. [12] Hu S, Muniraj G, Mishra A, et al. Characterization of silver diamine fluoride cytotoxicity using microfluidic tooth-on-a-chip and gingival equivalents[J]. Dent Mater, 2022, 38(8):1385-1394. [13] Zhang L, Han Y, Chen Q, et al. Sema4D-plexin-B1 signaling in recruiting dental stem cells for vascular stabilization on a microfluidic platform[J]. Lab Chip, 2022, 22(23):4632-4644. [14] Lee EJ, Kim Y, Salipante P, et al. Mechanical regulation of oral epithelial barrier function[J]. Bioengineering (Basel), 2023, 10(5): 517. [15] Makkar H, Zhou Y, Tan KS, et al. Modeling crevicular fluid flow and host-oral microbiome interactions in a gingival crevice-on-chip[J]. Adv Healthc Mater, 2023, 12(6): e2202376. [16] Ly KL, Rooholghodos SA, Rahimi C, et al. An Oral-mucosa-on-a-chip sensitively evaluates cell responses to dental monomers[J]. Biomed Microdevices, 2021, 23(1): 7. [17] Muniraj G, Tan RHS, Dai Y, et al. Microphysiological modeling of gingival tissues and host-material interactions using gingiva-on-chip[J]. Adv Healthc Mater, 2023, 12(32): e2301472. [18] Ly KL, Luo X, Raub CB. Oral mucositis on a chip: modeling induction by chemo- and radiation treatments and recovery[J]. Biofabrication, 2022, 15(1): 10. [19] Zoupanou S, Volpe A, Primiceri E, et al. SMILE platform: An innovative microfluidic approach for on-chip sample manipulation and analysis in oral cancer diagnosis[J]. Micromachines (Basel), 2021, 12(8): 885. [20] Pagella P, Catón J, Meisel CT, et al. Ameloblastomas exhibit stem cell potential, possess neurotrophic properties, and establish connections with trigeminal neurons[J]. Cells, 2020, 9(3): 644. [21] Song Y, Uchida H, Sharipol A, et al. Development of a functional salivary gland tissue chip with potential for high-content drug screening[J]. Commun Biol, 2021, 4(1): 361. [22] Yin Y, Vázquez-Rosado EJ, Wu D, et al. Microfluidic coaxial 3D bioprinting of cell-laden microfibers and microtubes for salivary gland tissue engineering[J]. Biomater Adv, 2023, 154: 213588. [23] Sriram G, Makkar H. Microfluidic organ-on-chip systems for periodontal research: advances and future directions[J]. Front Bioeng Biotechnol, 2024, 12: 1490453. [24] Vurat MT, Şeker Ş, Lalegül-Ülker Ö, et al. Development of a multicellular 3D-bioprinted microtissue model of human periodontal ligament-alveolar bone biointerface: Towards a pre-clinical model of periodontal diseases and personalized periodontal tissue engineering[J]. Genes Dis, 2022, 9(4): 1008-1023. [25] Atif AR, Pujari-Palmer M, Tenje M, et al. A microfluidics-based method for culturing osteoblasts on biomimetic hydroxyapatite[J]. Acta Biomater, 2021, 127: 327-337. [26] Syahruddin MH, Anggraeni R, Ana ID. A microfluidic organ-on-a-chip: into the next decade of bone tissue engineering applied in dentistry[J]. Future Sci OA, 2023, 9(10): FSO902. |