[1] Jemat A, Ghazali MJ, Razali M, et al. Surface modifications and their effects on titanium dental implants [J]. Biomed Res Int, 2015, 2015∶791725 [2] Gansukh O, Jeong J, Kim J, et al. Mechanical and histological effects of resorbable blasting media surface treatment on the initial stability of orthodontic mini-implants [J]. Biomed Res Int, 2016, 2016∶1-9 [3] Kim HC, Park SY, Han MS, et al. Occurrence of progressive bone loss around anodized surface implants and resorbable blasting media implants: a retrospective cohort study [J]. J Periodontol , 2017, 88(4)∶329-337 [4] Pachauri P, Bathala LR, Sangur R, et al. Techniques for dental implant nanosurface modifications [J]. J Adv Prosthodont, 2014, 6(6)∶498-504 [5] Chen Z, Zhang Y, Li J, et al. Influence of laser-microtextured surface collar on marginal bone loss and peri-implant soft tissue response: a systematic review and meta-analysis [J]. J Periodontol, 2017, 88(7)∶651-662 [6] Li G, Cao H, Zhang W, et al. Enhanced osseointegration of hierarchical micro/nanotopographic titanium fabricated by microarc oxidation and electrochemical treatment [J]. ACS Appl Mater Interfaces, 2016, 8(6)∶3840-3852 [7] Chiang HJ, Hsu HJ, Peng PW, et al. Early bone response to machined, sandblasting acid etching (SLA) and novel surface-functionalization (SLAffinity) titanium implants: characterization, biomechanical analysis and histological evaluation in pigs [J]. J Biomed Mater Res A, 2016, 104(2)∶397-405 [8] Calvo-Guirado JL,Satorres M,Negri B, et al. Biomechanical and histological evaluation of four different titanium implant surface modifications: an experimental study in the rabbit tibia [J]. Clin Oral Investig, 2014, 18(5)∶1495-1505 [9] Li X, Chen T, Hu J, et al. Modified surface morphology of a novel Ti-24Nb-4Zr-7.9Sn titanium alloy via anodic oxidation for enhanced interfacial biocompatibility and osseointegration [J]. Colloids Surf B Biointerfaces, 2016, 144∶265-275 [10] Barui S, Chatterjee S, Mandal S, et al. Microstructure and compression properties of 3D powder printed Ti-6Al-4V scaffolds with designed porosity: Experimental and computational analysis [J]. Mater Sci Eng C Mater Biol Appl, 2017, 70(Pt 1)∶812-823 [11] Tan XP, Tan YJ, Chow CSL, et al. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility [J]. Mater Sci Eng C Mater Biol Appl, 2017, 76∶1328-1343 [12] Bai Y, Zhou R, Cao J, et al. Microarc oxidation coating covered Ti implants with micro-scale gouges formed by a multi-step treatment for improving osseointegration [J]. Mater Sci Eng C Mater Biol Appl, 2017, 76∶908-917 [13] Yang DH, Moon SW, Lee DW. Surface modification of titanium with BMP-2/GDF-5 by a heparin linker and its efficacy as a dental implant [J]. Int J Mol Sci, 2017, 18(1). pii: E229 [14] Yoo SY, Kim SK, Heo SJ, et al. Biochemical responses of anodized titanium implants with a poly(lactide-co-glycolide)/bone morphogenic protein-2 submicron particle coating. part 1: an in vitro study [J]. Int J Oral Maxillofac Implants, 2015, 30(3)∶512-518 [15] Canullo L, Genova T, Tallarico M, et al. Plasma of argon affects the earliest biological response of different implant surfaces: an in vitro comparative study [J]. J Dent Res, 2016, 95(5)∶566-573 [16] Corpas Ldos S,Lambrichts I,Quirynen M, et al. Peri-implant bone innervation: histological findings in humans [J]. Eur J Oral Implantol, 2014, 7(3)∶283-292 [17] Li X, Liao D, Gong P, et al. Biological behavior of neurally differentiated periodontal ligament stem cells on different titanium implant surfaces [J]. J Biomed Mater Res A, 2014, 102(8)∶2805-2812 [18] 李保胜.不同种植体表面形貌对神经再生影响的初步研究[D].吉林大学, 2013 [19] Saghiri MA, Ghasemi M, Moayer AR, et al. A novel method to evaluate the neurocompatibility of dental implants [J]. Int J Oral Maxillofac Implants, 2014, 29(1)∶41-50 [20] Fan YW,Cui FZ,Hou SP, et al. Culture of neural cells on silicon wafers with nano-scale surface topograph [J]. J Neurosci Methods, 120(1)∶17-23 [21] Bürgers R, Gerlach T, Hahnel S, et al. In vivo and in vitro biofilm formation on two different titanium implant surfaces [J]. Clin Oral Implants Res, 2010, 21(2)∶156-164 [22] Lin HY, Liu Y, Wismeijer D, et al. Effects of oral implant surface roughness on bacterial biofilm formation and treatment efficacy [J].Int J Oral Maxillofac Implants, 2013, 28(5)∶1226-1231 [23] 叶长林. 不同植体表面与实验性种植体周围炎相关性的研究[D]. 安徽医科大学, 2015 [24] Cui CX, Gao X, Qi YM, et al. Microstructure and antibacterial property of in situ TiO2 nanotube layers/titanium biocomposites [J]. J Mech Behav Biomed Mater, 2012, 8(2)∶178-183 [25] Sengstock C, Lopian M, Motemani Y, et al. Structure-related antibacterial activity of a titanium nanostructured surface fabricated by glancing angle sputter deposition [J]. Nanotechnology, 2014, 25(19)∶195101-195111 |