[1] Diaz P, Gonzalo E, Villagra LJG, et al. What is the prevalence of peri-implantitis? A systematic review and meta-analysis [J]. BMC Oral Health, 2022, 22(1):449. [2] 陈卓.简述医疗废水处理中高级氧化技术应用[J].清洗世界,2022,38(10):81-83. [3] 曾春玉,王者馥,蔡芸舟,等.种植体表面去污处理在种植体周围炎治疗中的作用[J].中南大学学报(医学版),2022,47(4):521-528. [4] Almohandes A, Abrahamsson I, Dionigi C, et al. Surgical treatment of experimental peri-implantitis using mechanical and chemical decontamination procedures: A pre-clinical in vivo study [J]. J Clin Periodontol, 2022, 49(5):518-525. [5] Han Q, Jiang YL, Brandt BW, et al. Regrowth of microcosm biofilms on titanium surfaces after various antimicrobial treatments [J]. Front Microbiol, 2019, 10:2693. [6] Lollobrigida M, Fortunato L, Serafini G, et al. The prevention of implant surface alterations in the treatment of peri-implantitis: Comparison of three different mechanical and physical treatments [J]. Int J Environ Res Public Health, 2020, 17(8):2624. [7] 孙小钦,王旭,韩琪,等.低温等离子体在口腔微生物感染性疾病中的应用研究进展[J].实用医院临床杂志,2022,19(4):199-202. [8] Lee JY, Kim KH, Park SY, et al. The bactericidal effect of an atmospheric-pressure plasma jet on Porphyromonas gingivalis biofilms on sandblasted and acid-etched titanium discs [J]. J Periodontal Implant Sci, 2019, 49(5):319-329. [9] Khosravi S, Jafari S, Zamani H, et al. Inactivation of staphylococcus aureus and escherichia coli biofilms by air-based atmospheric-pressure DBD plasma [J]. Appl Biochem Biotechnol, 2021, 193(11):3641-3650. [10] Kamionka J, Matthes R, Holtfreter B, et al. Efficiency of cold atmospheric plasma, cleaning powders and their combination for biofilm removal on two different titanium implant surfaces [J]. Clin Oral Investig, 2022, 26(3):3179-3187. [11] Hui WL, Ipe D, Perrotti V, et al. Novel technique using cold atmospheric plasma coupled with air-polishing for the treatment of titanium discs grown with biofilm: An in-vitro study [J]. Dent Mater, 2021, 37(2):359-369. [12] Modic M, Kovac J, Nicholls JR, et al. Targeted plasma functionalization of titanium inhibits polymicrobial biofilm recolonization and stimulates cell function [J]. Appl Surf Sci, 2019, 487:1176-1188. [13] Yang Y, Zheng M, Li J, et al. Inhibition of bacterial growth on zirconia abutment with a helium cold atmospheric plasma jet treatment [J]. Clin Oral Investig, 2020, 24(4):1465-1477. [14] Zhou X, Wu D, Liang D, et al. Evaluation of modified cold-atmospheric pressure plasma (MCAP) for the treatment of peri-implantitis in beagles [J]. Oral Dis, 2022, 28(2):495-502. [15] Evert K, Kocher T, Schindler A, et al. Repeated exposure of the oral mucosa over 12 months with cold plasma is not carcinogenic in mice [J]. Sci Rep, 2021, 11(1):20672. [16] Zhang C, Yu Z, Wang X. A review of electrochemical oxidation technology for advanced treatment of medical wastewater [J]. Front Chem, 2022, 10:1002038. [17] Zipprich H, Weigl P, Di Gianfilippo R, et al. Comparison of decontamination efficacy of two electrolyte cleaning methods to diode laser, plasma, and air-abrasive devices [J]. Clin Oral Investig, 2022, 26(6):4549-4558. [18] Kyaw TT, Hanawa T, Kasugai S. Investigation of different electrochemical cleaning methods on contaminated healing abutments in vitro: an approach for metal surface decontamination [J]. Int J Implant Dent, 2020, 6(1):64. [19] Ossowska A, Olive JM, Zielinski A, et al. Effect of double thermal and electrochemical oxidation on titanium alloys for medical applications[J].Appl Surf Sci, 2021, 563:150340.1-150340.13. [20] Goltz M, Koch M, Detsch R, et al. Influence of in-situ electrochemical oxidation on implant surface and colonizing microorganisms evaluated by scanning electron microscopy [J]. Materials (Basel), 2019, 12(23):3977. [21] Koch M, Goltz M, Xiangjun M, et al. Electrochemical disinfection of dental implants experimentally contaminated with microorganisms as a model for Periimplantitis [J]. J Clin Med, 2020, 9(2):475. [22] Kaiser F, Scharnweber D, Bierbaum S, et al. Success and side effects of different treatment options in the low current attack of bacterial biofilms on titanium implants [J]. Bioelectrochemistry, 2020, 133:107485. [23] Schlee M, Rathe F, Brodbeck U, et al. Treatment of peri-implantitis-electrolytic cleaning versus mechanical and electrolytic cleaning-A randomized controlled clinical trial-six-month results [J]. J Clin Med, 2019, 8(11):1909. [24] Schlee M, Wang HL, Stumpf T, et al. Treatment of periimplantitis with electrolytic cleaning versus mechanical and electrolytic cleaning: 18-month results from a randomized controlled clinical trial [J]. J Clin Med, 2021, 10(16):3475. [25] Bosshardt DD, Brodbeck UR, Rathe F, et al. Evidence of re-osseointegration after electrolytic cleaning and regenerative therapy of peri-implantitis in humans: a case report with four implants [J]. Clin Oral Investig, 2022, 26(4):3735-3746. [26] Meenakshi PS, Rajasekar A. A review on ozone therapy in periodontitis [J]. Bioinformation, 2022, 18(7):634-639. [27] Yang YY, Zhang HH, Komasa S, et al. UV/ozone irradiation manipulates immune response for antibacterial activity and bone regeneration on titanium [J]. Mater Sci Eng C Mater Biol Appl, 2021, 129:112377. [28] Murakami M, Nagano K, Hamaoka K, et al. Ozone water bactericidal and cleaning effects on oral diseases-related planktonic and bacterial biofilms [J]. J Hard Tissue Biol, 2021, 30(1):27-31. [29] Faccioni F, Bevilacqua L, Porrelli D, et al. Ultrasonic instrument effects on different implant surfaces: profilometry, energy-dispersive X-ray spectroscopy, and microbiology in vitro study [J]. Int J Oral Maxillofac Implants, 2021, 36(3):520-528. [30] Takechi M, Takamoto M, Ninomiya Y, et al. In vitro investigation of the cell compatibility and antibacterial properties of titanium treated with calcium and ozone [J]. Dent Mater J, 2021, 40(3):712-718. [31] Isler SC, Soysal F, Akca G, et al. The effects of decontamination methods of dental implant surface on cytokine expression analysis in the reconstructive surgical treatment of peri-implantitis [J]. Odontology, 2021, 109(1):103-113. [32] Bono N, Ponti F, Punta C, et al. Effect of UV irradiation and TiO2-photocatalysis on airborne bacteria and viruses: An overview [J]. Materials, 2021, 14(5):1075. [33] Sousa V, Mardas N, Spratt D, et al. The effect of microcosm biofilm decontamination on surface topography, chemistry, and biocompatibility dynamics of implant titanium surfaces [J]. Int J Mol Sci, 2022, 23(17):10033. [34] Wu H, Xie L, He M, et al. A wear-resistant TiO2 nanoceramic coating on titanium implants for visible-light photocatalytic removal of organic residues [J]. Acta Biomater, 2019, 97:597-607. [35] Nakamura K, Shirato M, Tenkumo T, et al. Hydroxyl radicals generated by hydrogen peroxide photolysis recondition biofilm-contaminated titanium surfaces for subsequent osteoblastic cell proliferation [J]. Sci Rep, 2019, 9(1):4688. [36] Caccianiga G, Rey G, Caccianiga P, et al. Laser management of peri-implantitis: A comparison between photodynamic therapy combined with hydrogen peroxide (OHLLT) and OHLLT + Er:YAG laser. A retrospective controlled study [J]. Appl Sci, 2021, 11(15):6771. [37] Lee EH, Lee SW, Seo Y, et al. Manganese oxide nanozyme-doped diatom for safe and efficient treatment of peri-implantitis [J]. ACS Appl Mater Interfaces, 2022, 14(24):27634-27650. |