[1] Dimitriou R, Mataliotakis GI, Calori GM, et al. The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence [J]. BMC Med, 2012, 10:81. [2] Ren Y, Fan L, Alkildani S, et al. Barrier membranes for guided bone regeneration (GBR): A focus on recent advances in collagen membranes [J]. Int J Mol Sci, 2022, 23(23):14987. [3] Kim K, Su Y, Kucine AJ, et al. Guided bone regeneration using barrier membrane in dental applications [J]. ACS Biomater Sci Eng, 2023, 9(10):5457-5478. [4] Sbricoli L, Guazzo R, Annunziata M, et al. Selection of collagen membranes for bone regeneration: A literature review [J]. Materials (Basel), 2020, 13(3):786. [5] de Souza A, de Almeida Cruz M, de Araújo TAT, et al. Fish collagen for skin wound healing: a systematic review in experimental animal studies [J]. Cell Tissue Res, 2022, 388(3):489-502. [6] Pati F, Datta P, Adhikari B, et al. Collagen scaffolds derived from fresh water fish origin and their biocompatibility [J]. J Biomed Mater Res A, 2012, 100(4):1068-1079. [7] Liu S, Lau CS, Liang K, et al. Marine collagen scaffolds in tissue engineering [J]. Curr Opin Biotechnol, 2022, 74:92-103. [8] Cho JK, Jin YG, Rha SJ, et al. Biochemical characteristics of four marine fish skins in Korea [J]. Food Chem, 2014, 159:200-207. [9] Oslan SNH, Li CX, Shapawi R, et al. Extraction and characterization of bioactive fish by-product collagen as promising for potential wound healing agent in pharmaceutical applications: Current trend and future perspective [J]. Int J Food Sci, 2022, 2022:9437878. [10] Subhan F, Ikram M, Shehzad A, et al. Marine collagen: An emerging player in biomedical applications [J]. J Food Sci Technol, 2015, 52(8):4703-4707. [11] Silva TH, Moreira-Silva J, Marques AL, et al. Marine origin collagens and its potential applications [J]. Mar Drugs, 2014, 12(12):5881-5901. [12] Subhan F, Hussain Z, Tauseef I, et al. A review on recent advances and applications of fish collagen [J]. Crit Rev Food Sci Nutr, 2021, 61(6):1027-1037. [13] Gao Y, Wang S, Shi B, et al. Advances in modification methods based on biodegradable membranes in guided bone/tissue regeneration: A review [J]. Polymers (Basel), 2022, 14(5):871. [14] Oryan A, Kamali A, Moshiri A, et al. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds [J]. Int J Biol Macromol, 2018, 107(Pt A):678-688. [15] Chu C, Deng J, Xiang L, et al. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts [J]. Mater Sci Eng C Mater Biol Appl, 2016, 67:386-394. [16] Jackson JK, Zhao J, Wong W, et al. The inhibition of collagenase induced degradation of collagen by the galloyl-containing polyphenols tannic acid, epigallocatechin gallate and epicatechin gallate [J]. J Mater Sci Mater Med, 2010, 21(5):1435-1443. [17] Islam MT, Felfel RM, Abou Neel EA, et al. Bioactive calcium phosphate-based glasses and ceramics and their biomedical applications: A review [J]. J Tissue Eng, 2017, 8:2041731417719170. [18] Sam G, Pillai BR. Evolution of barrier membranes in periodontal regeneration-"Are the third generation membranes really here?" [J]. J Clin Diagn Res, 2014, 8(12):ZE14-ZE17. [19] Wang Y, Van Manh N, Wang H, et al. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects [J]. Int J Nanomedicine, 2016, 11:2053-2067. [20] 楚水晶,农绍庄,柳春山,等.酶法提取马面鱼鱼皮胶原蛋白的工艺研究[J].食品科技,2010,35(5):234-237+241. [21] Zeng A, Li H, Liu J, et al. The progress of decellularized scaffold in stomatology [J]. Tissue Eng Regen Med, 2022, 19(3):451-461. [22] Wu L, Shao H, Fang Z, et al. Mechanism and effects of polyphenol derivatives for modifying collagen [J]. ACS Biomater Sci Eng, 2019, 5(9):4272-4284. [23] Wu L, Wang Q, Li Y, et al. A dopamine acrylamide molecule for promoting collagen biomimetic mineralization and regulating crystal growth direction [J]. ACS Appl Mater Interfaces, 2021, 13(33):39142-39156. [24] Elgali I, Omar O, Dahlin C, et al. Guided bone regeneration: materials and biological mechanisms revisited [J]. Eur J Oral Sci, 2017, 125(5):315-337. [25] Yang Z, Wu C, Shi H, et al. Advances in barrier membranes for guided bone regeneration techniques [J]. Front Bioeng Biotechnol, 2022, 10:921576. [26] León-López A, Morales-Peñaloza A, Martínez-Juárez VM, et al. Hydrolyzed collagen-sources and applications [J]. Molecules, 2019, 24(22):4031. [27] Song WK, Liu D, Sun LL, et al. Physicochemical and biocompatibility properties of type Ⅰ collagen from the skin of nile tilapia (oreochromis niloticus) for biomedical applications [J]. Mar Drugs, 2019, 17(3):137. [28] Sinthusamran S, Benjakul S, Kishimura H. Comparative study on molecular characteristics of acid soluble collagens from skin and swim bladder of seabass (Lates calcarifer) [J]. Food Chem, 2013, 138(4):2435-2441. [29] Ge B, Wang H, Li J, et al. Comprehensive assessment of nile tilapia skin (oreochromis niloticus) collagen hydrogels for wound dressings [J]. Mar Drugs, 2020, 18(4):178. [30] Zhang X, Chen X, Hong H, et al. Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering [J]. Bioact Mater, 2021, 10:15-31. [31] Abaricia JO, Shah AH, Musselman RM, et al. Hydrophilic titanium surfaces reduce neutrophil inflammatory response and NETosis [J]. Biomater Sci, 2020, 8(8):2289-2299. [32] Lang NP, Salvi GE, Huynh-Ba G, et al. Early osseointegration to hydrophilic and hydrophobic implant surfaces in humans [J]. Clin Oral Implants Res, 2011, 22(4):349-356. [33] Gou M, Huang YZ, Hu JG, et al. Epigallocatechin-3-gallate cross-linked small intestinal submucosa for guided bone regeneration [J]. ACS Biomater Sci Eng, 2019, 5(10):5024-5035. |