[1] Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications[J].J Mech Behav Biomed Mater, 2008, 1(1): 30-42. [2] Elani HW, Starr JR, Da Silva JD, et al. Trends in dental implant use in the U.S., 1999-2016, and projections to 2026[J].J Dent Res, 2018, 97(13): 1424-1430. [3] de Avila ED, van Oirschot BA, van den Beucken J. Biomaterial-based possibilities for managing peri-implantitis[J].J Periodontal Res, 2020, 55(2): 165-173. [4] Guglielmotti MB, Olmedo DG, Cabrini RL. Research on implants and osseointegration[J].Periodontol 2000, 2019, 79(1): 178-189. [5] Schwarz F, Ramanauskaite A. It is all about peri-implant tissue health[J].Periodontol 2000, 2022, 88(1): 9-12. [6] 林国芬,许杨波,王思源,等.种植失败原因分析[J].口腔医学,2023,43(1): 18-23. [7] Bielemann AM, Marcello-Machado RM, Leite FRM, et al. Comparison between inflammation-related markers in peri-implant crevicular fluid and clinical parameters during osseointegration in edentulous jaws[J].Clin Oral Investig, 2018, 22(1): 531-543. [8] Jemat A, Ghazali MJ, Razali M, et al. Surface modifications and their effects on titanium dental implants[J].Biomed Res Int, 2015: 791725. [9] Smeets R, Stadlinger B, Schwarz F, et al. Impact of dental implant surface modifications on osseointegration[J].Biomed Res Int, 2016: 6285620. [10] Podzimek S, Tomka M, Nemeth T, et al. Influence of metals on cytokines production in connection with successful implantation therapy in dentistry[J].Neuro Endocrinol Lett, 2010, 31(5): 657-662. [11] Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials[J].Semin Immunol, 2008, 20(2): 86-100. [12] Niu Y, Wang Z, Shi Y, et al. Modulating macrophage activities to promote endogenous bone regeneration: Biological mechanisms and engineering approaches[J].Bioact Mater, 2021, 6(1): 244-261. [13] 严佳慧,郎欣蕊,章燕珍.巨噬细胞在种植体骨结合及早期失败的研究进展[J].口腔颌面修复学杂志,2022,23(1): 70-74. [14] Doitsidou M, Reichman-Fried M, Stebler J, et al. Guidance of primordial germ cell migration by the chemokine SDF-1[J].Cell, 2002, 111(5): 647-659. [15] Song M, Jang H, Lee J, et al. Regeneration of chronic myocardial infarction by injectable hydrogels containing stem cell homing factor SDF-1 and angiogenic peptide Ac-SDKP[J].Biomaterials, 2014, 35(8): 2436-2445. [16] Petruzziello-Pellegrini TN, Yuen DA, Page AV, et al. The CXCR4/CXCR7/SDF-1 pathway contributes to the pathogenesis of Shiga toxin-associated hemolytic uremic syndrome in humans and mice[J].J Clin Invest, 2012, 122(2): 759-776. [17] Kyriakides TR, Kim HJ, Zheng C, et al. Foreign body response to synthetic polymer biomaterials and the role of adaptive immunity[J].Biomed Mater, 2022, 17(2):10.1088/1748-605X/ac5574. [18] Cai X, Chen R, Ma K, et al. Identification of the CXCL12-CXCR4/CXCR7 axis as a potential therapeutic target for immunomodulating macrophage polarization and foreign body response to implanted biomaterials[J].Applied Materials Today, 2020, 18: 100454. [19] Insua A, Monje A, Wang HL, et al. Basis of bone metabolism around dental implants during osseointegration and peri-implant bone loss[J].J Biomed Mater Res A, 2017, 105(7): 2075-2089. [20] Roccuzzo A, Imber JC, Salvi GE, et al. Peri-implantitis as the consequence of errors in implant therapy[J].Periodontol 2000, 2023, 92(1): 350-361. [21] Trindade R, Albrektsson T, Tengvall P, et al. Foreign body reaction to biomaterials: On mechanisms for buildup and breakdown of osseointegration[J].Clin Implant Dent Relat Res, 2016, 18(1): 192-203. [22] Abaricia JO, Shah AH, Ruzga MN, et al. Surface characteristics on commercial dental implants differentially activate macrophages in vitro and in vivo[J].Clin Oral Implants Res, 2021, 32(4): 487-497. [23] Yang Y, Zhang T, Jiang M, et al. Effect of the immune responses induced by implants in a integrated three-dimensional micro-nano topography on osseointegration[J].J Biomed Mater Res A, 32021, 109(8): 1429-1440. [24] Mesa-Restrepo A, Byers E, Brown JL, et al. Osteointegration of Ti bone implants: A study on how surface parameters control the foreign body response[J].ACS Biomater Sci Eng, 2024, 10(8): 4662-4681. [25] Yang N, Wu T, Li M, et al. Silver-quercetin-loaded honeycomb-like Ti-based interface combats infection-triggered excessive inflammation via specific bactericidal and macrophage reprogramming[J].Bioact Mater, 2025, 43: 48-66. [26] Thevenot PT, Nair AM, Shen J, et al. The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response[J].Biomaterials, 2010, 31(14): 3997-4008. [27] Haider H, Jiang S, Idris NM, et al. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair[J].Circ Res, 2008, 103(11): 1300-1308. [28] O'Neill LA. Targeting signal transduction as a strategy to treat inflammatory diseases[J].Nat Rev Drug Discov, 2006, 5(7): 549-563. [29] Furlong M, Seong JY. Evolutionary and comparative genomics to drive rational drug design, with particular focus on neuropeptide seven-transmembrane receptors[J].Biomol Ther (Seoul), 2017, 25(1): 57-68. [30] Correll CC, McKittrick BA. Biased ligand modulation of seven transmembrane receptors (7TMRs): functional implications for drug discovery[J].J Med Chem, 2014, 57(16): 6887-6896. [31] Ahmad R, Wojciech S, Jockers R. Hunting for the function of orphan GPCRs- beyond the search for the endogenous ligand[J].Br J Pharmacol, 2015, 172(13): 3212-3228. [32] Rask-Andersen M, Almén MS, Schiöth HB. Trends in the exploitation of novel drug targets[J].Nat Rev Drug Discov, 2011, 10(8): 579-590. |