[1] Basha AG, Shantaraj R, Mogegowda SB. Comparative study between conventional en-masse retraction (sliding mechanics) and en-masse retraction using orthodontic micro implant [J]. Implant Dent, 2010, 19(2): 128-136. [2] Liu YH, Ding WH, Liu J, et al. Comparison of the differences in cephalometric parameters after active orthodontic treatment applying mini-screw implants or transpalatal arches in adult patients with bialveolar dental protrusion [J]. J Oral Rehabil, 2009, 36(9): 687-695. [3] Chatzigianni A, Keilig L, Reimann S, et al. Effect of mini-implant length and diameter on primary stability under loading with two force levels [J]. Eur J Orthod, 2011, 33(4): 381-387. [4] Boyce TM, Fyhrie DP, Glotkowski MC, et al. Damage type and strain mode associations in human compact bone bending fatigue [J]. J Orthop Res, 1998, 16(3): 322-329. [5] Diab T, Sit S, Kim D, et al. Age-dependent fatigue behaviour of human cortical bone [J]. Eur J Morphol, 2005, 42(1-2): 53-59. [6] Martin RB. Fatigue microdamage as an essential element of bone mechanics and biology [J]. Calcif Tissue Int, 2003, 73(2): 101-107. [7] Mohsin S, O'Brien FJ, Lee TC. Microcracks in compact bone: a three-dimensional view [J]. J Anat, 2006, 209(1): 119-124. [8] Verna C, Dalstra M, Lee TC, et al. Microdamage in porcine alveolar bone due to functional and orthodontic loading [J]. Eur J Morphol, 2005, 42(1-2): 3-11. [9] Lakshmikantha HT, Ravichandran NK, Jeon M, et al. Assessment of cortical bone microdamage following insertion of microimplants using optical coherence tomography: a preliminary study [J]. J Zhejiang Univ Sci B, 2018, 19(11): 818-828. [10] Lee NK, Baek SH. Effects of the diameter and shape of orthodontic mini-implants on microdamage to the cortical bone [J]. Am J Orthod Dentofacial Orthop, 2010, 138(1): 8.e1-8; discussion 8-9. [11] Frost HM. A brief review for orthopedic surgeons: fatigue damage (microdamage) in bone (its determinants and clinical implications) [J]. J Orthop Sci, 1998, 3(5): 272-281. [12] Çehreli S, Arman-Özçırpıcı A. Primary stability and histomorphometric bone-implant contact of self-drilling and self-tapping orthodontic microimplants [J]. Am J Orthod Dentofacial Orthop, 2012, 141(2): 187-195. [13] Popa A, Dehelean C, Calniceanu H, et al. A custom-made orthodontic mini-implant-effect of insertion angle and cortical bone thickness on stress distribution with a complex in vitro and in vivo biosafety profile [J]. Materials (Basel), 2020, 13(21): 4789. [14] 单丽华, 周冠军, 郄会, 等. 高植入扭力对微型种植体-骨界面愈合的组织学影响[J].实用口腔医学杂志, 2012, 28(4): 430-434. [15] 吴也可, 赵立星, 郜然然. 植入不同皮质骨厚度区域微种植体骨整合的组织形态学和生物力学研究[J].实用口腔医学杂志, 2020, 36(5): 721-725. [16] Mizuki T. Evaluation of primary stability of inclined orthodontic mini-implants [J]. J Oral Sci, 2009, 51(3): 347-353. [17] Topouzelis N, Tsaousoglou P. Clinical factors correlated with the success rate of miniscrews in orthodontic treatment [J]. Int J Oral Sci, 2012, 4(1): 38-44. [18] Meira TM, Tanaka OM, Ronsani MM, et al. Insertion torque, pull-out strength and cortical bone thickness in contact with orthodontic mini-implants at different insertion angles [J]. Eur J Orthod, 2013, 35(6): 766-771. [19] Araghbidikashani M, Golshah A, Nikkerdar N, et al. In-vitro impact of insertion angle on primary stability of miniscrews [J]. Am J Orthod Dentofacial Orthop, 2016, 150(3): 436-443. [20] 姚宇, 蔡斌, 麦理想, 等. 青少年上颌后牙区微种植钉的植入角度研究[J].中华口腔医学研究杂志(电子版), 2013, 7(6): 460-465. [21] Xavier J, Sarika K, Ajith VV, et al. Evaluation of strain and insertion torque of mini-implants at 90°and 45°angulations on a bone model using three-dimensional finite element analysis [J]. Contemp Clin Dent, 2023, 14(1): 25-31. [22] Sana S, Reddy R, Talapaneni AK, et al. Evaluation of stability of three different mini-implants, based on thread shape factor and numerical analysis of stress around mini-implants with different insertion angle, with relation to en-masse retraction force [J]. Dental Press J Orthod, 2020, 25(6): 59-68. [23] Wawrzinek C, Sommer T, Fischer-Brandies H. Microdamage in cortical bone due to the overtightening of orthodontic microscrews [J]. J Orofac Orthop, 2008, 69(2): 121-134. [24] Motoyoshi M, Inaba M, Ono A, et al. The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone [J]. Int J Oral Maxillofac Surg, 2009, 38(1): 13-18. [25] Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography [J]. Science, 1991, 254(5035): 1178-1181. [26] Bredbenner TL, Haug RH. Substitutes for human cadaveric bone in maxillofacial rigid fixation research [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2000, 90(5): 574-580. [27] Migliorati M, Drago S, Schiavetti I, et al. Orthodontic miniscrews: an experimental campaign on primary stability and bone properties [J]. Eur J Orthod, 2015, 37(5): 531-538. [28] Cho KC, Baek SH. Effects of predrilling depth and miniimplant shape on the mechanical properties of orthodontic mini-implants during the insertion procedure [J]. Angle Orthod, 2012, 82(4): 618-624. [29] Lim SA, Cha JY, Hwang CJ. Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length [J]. Angle Orthod, 2008, 78(2): 234-240. [30] Brinley CL, Behrents R, Kim KB, et al. Pitch and longitudinal fluting effects on the primary stability of miniscrew implants [J]. Angle Orthod, 2009, 79(6): 1156-1161. [31] Migliorati M, Signori A, Silvestrini Biavati A. Temporary anchorage device stability: an evaluation of thread shape factor [J]. Eur J Orthod, 2012, 34(5): 582-586. [32] Holm L, Cunningham SJ, Petrie A, et al. An in vitro study of factors affecting the primary stability of orthodontic mini-implants [J]. Angle Orthod, 2012, 82(6): 1022-1028. [33] Inaba M. Evaluation of primary stability of inclined orthodontic mini-implants [J]. J Oral Sci, 2009, 51(3): 347-353. [34] 赵弘,刘洪臣,顾晓明.骨皮质厚度及植入角度对支抗种植钉影响的三维有限元分析[J].口腔颌面修复学杂志, 2010, 11(1): 24-27. [35] Reitman CA, Nguyen L, Fogel GR. Biomechanical evaluation of relationship of screw pullout strength, insertional torque, and bone mineral density in the cervical spine [J]. J Spinal Disord Tech, 2004, 17(4): 306-311. [36] Chang WT, Lyu DY, Lai YL, et al. High-precision and non-invasive measurement of crestal bone level by optical coherence tomography [J]. J Dent Sci, 2025, 20: 147-153. |