口腔医学研究 ›› 2018, Vol. 34 ›› Issue (4): 432-436.DOI: 10.13701/j.cnki.kqyxyj.2018.04.022

• 口腔材料学研究 • 上一篇    下一篇

明胶/染料木素纳米复合物的制备及其表征

宋效庆, 王霞, 刘红*, 陈天杰, 刘称称, 秦爽, 路政宽, 黄山   

  1. 吉林大学口腔医院综合科吉林省牙发育及颌骨重塑与再生重点实验室 吉林 长春 130021
  • 收稿日期:2017-10-31 出版日期:2018-04-28 发布日期:2018-04-25
  • 通讯作者: 刘红,E-mail: jdliuhong@163.com
  • 作者简介:宋效庆(1987~ ),男,新疆库尔勒,硕士,医师,主要从事修复的临床治疗工作。
  • 基金资助:
    国家自然科学基金(编号:81771123)吉林省中医药科技项目(编号:2017243)

Preparation and Characterization of Gelatin/genistein Nanocomplex.

SONG Xiao-qing, WANG Xia, LIU Hong*, CHENG Tian-jie, LIU Chen-chen, QIN Shuang, LU Zheng-kuan, HUANG Shan   

  1. Department of Oral Comprehensive Treatment, Jilin Provincal Key Laboratory of Tooth Development and Bone Remodeling School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
  • Received:2017-10-31 Online:2018-04-28 Published:2018-04-25

摘要: 目的:制备结构稳定,易于被包封的明胶/染料木素纳米复合物。方法:两步去溶剂法制备明胶纳米粒(gelatin nanoparticles,GNPs),将染料木素(genistein,GEN)吸附于GNPs表面,形成纳米粒复合物,表征其形态、粒径,明确其吸附条件,并计算包封率;以时间、温度、GNPs的浓度、pH为考量参数,检测上清液在262 nm处的峰值,通过标准曲线方程计算染料木素的浓度,量化各参数对包封率的作用。结果:GNPs微球表面呈锥形或梭形,粒径范围150~200 nm。最高载药量约为34.7%,最优化条件下包封率超过90%。随着纳米复合物的降解,GEN的释放呈现出可逆性,冻干后的纳米复合物,具有良好纳米形态和稳定的药物含量。结论:两步去溶剂法可制备形态均一且具有高包封率的GNPs/GEN纳米复合物,同时具有良好的结构稳定性,可室温保存0.5年以上。

关键词: 明胶, 染料木素, 纳米复合物

Abstract: Objective: To prepare biodegradable and easily entrapped gelatin/genistein nanocomplex for promote alveolar bone formation. Methods: Gelatin nanoparticles (GNPs) were prepared by two-step desolvation method, after then genistein (GEN) was adsorbed on the surface of GNPs to formulate nanocomplexes. The diameter, surface morphology, adsorption conditions, and capacity were measured and calculated. The loading of GEN on the GNPs was measured at different concentration of the GNPs, times, temperatures, and pH values by HPLC at 262nm. The concentration of genistein was calculated by standard curve equation, and the effect of various parameters on the amount of adsorption was quantified. Results: The surface of GNPs was smooth and round, and the particle diameter distribution range was from 150 to 200nm. The highest drug loading was about 34.7%, and the entrapment efficiency was over 90% under the optimized conditions. With the degradation of nanocomplexes, the release of genistein was reversible, and the lyophilized nanocomplex had stable nanostructure and drug content. Conclusion: Two-step desolvation method is an ideal way to prepare gelatin/genistein nanocomplex. Besides, the excellent structural stability enables it to be stored at room temperature for more than half a year.

Key words: Gelatin, Genistein, Nanocomplex