[1] 葛丽,刘立伟,刘奇坤,等.利用水凝胶设计组织再生微环境[J].解剖科学进展,2014,20(5)∶458-462 [2] 雷鸣,高丽娜,陈发明,等.牙髓组织工程和再生中生物支架材料的进展[J].牙体牙髓牙周病学杂志,2013,23(1)∶51-56 [3] 王见伟,宋利锋,赵瑾,等.基于多肽结构的聚合物水凝胶[J].化学进展,2015,27(4)∶373-384 [4] 刘水莲,宿烽,李速明,等.合成水凝胶材料在组织工程中的应用[J].中国材料进展,2016,35(3)∶227-232 [5] Marklein RA, Burdick JA. Controlling stem cell fate with material design [J]. Adv Mater, 2010, 22(2)∶175-189 [6] Jones TD, Kefi A, Sun S, et al. An optimized injectable hydrogel scaffold supports human dental pulp stem cell viability and spreading [J]. Adv Med, 2016, 2016∶1-8 [7] Li HL, Zhang H, Huang H, et al. The effect of amino density on the attachment, migration, and differentiation of rat neural stem cells in vitro [J]. Mol Cells, 2013, 35(5)∶436-443 [8] Kuzmenko V, Sämfors S, Hägg D, et al. Universal method for protein bioconjugation with nanocellulose scaffolds for increased cell adhesion [J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(8)∶4599 [9] Barczyk M, Carracedo S, Gullberg D. Integrins [J]. Cell Tissue Res, 2010, 339(1)∶269-280 [10] Hu P, Luo B. Integrin bi-directional signaling across the plasma membrane [J]. J Cell Physiol, 2013,228(2)∶306-312 [11] Chun C, Lim HJ, Hong KY, et al. The use of injectable, thermosensitive poly(organophosphazene)-RGD conjugates for the enhancement of mesenchymal stem cell osteogenic differentiation[J].Biomaterials,2009,30(31)∶6295-6308 [12] Wu Y, Yang Z, Law JB, et al. The combined effect of substrate stiffness and surface topography on chondrogenic differentiation of mesenchymal stem cells [J]. Tissue Eng Part A, 2017, 23(1-2):43-54 [13] Li Z, Gong Y, Sun S, et al. Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells [J]. Biomaterials, 2013, 34(31)∶7616-7625 [14] Wu YN, Law JB, He AY, et al. Substrate topography determines the fate of chondrogenesis from human mesenchymal stem cells resulting in specific cartilage phenotype formation [J]. Nanomedicine, 2014, 10(7)∶1507 [15] Dalby MJ, Gadegaard N, Oreffo RO. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate [J]. Nat Mater, 2014, 13(6)∶558 [16] 文采.多孔矿化水凝胶材料诱导人胚胎干细胞成骨分化的研究[J].东南大学,2015 [17] 曾蕾.新型微孔水凝胶的制备及其在软骨组织工程中的应用研究[J].华南理工大学,2014 [18] Seliktar D. Designing cell-compatible hydrogels for biomedicalapplications [J]. Science, 2012, 336(6085)∶1124-1128 [19] Tsuruga E, Takita H, Itoh H, et al. Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis [J]. J Biochem, 1997, 121(2)∶317-324 [20] Annabi N, Nichol JW, Zhong X, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering [J]. Tissue Eng Part B Rev , 2010, 16(4)∶371-383 [21] Wen JH, Vincent LG, Fuhrmann A, et al. Interplay of matrix stiffness and protein tethering in stem cell differentiation [J]. Nat Mater, 2014, 13(10)∶979-987 [22] Engler AJ, Sen S, Sweeney HL, et al. Matrix elasticity directs stem cell lineage specification [J]. Cell, 2006, 126(4)∶677-689 [23] Seib FP, Prewitz M, Werner C, et al. Matrix elasticity regulates the secretory profile of human bone marrow-derived multipotent mesenchymal stromal cells (MSCs) [J]. Biochem Biophys Res Commun, 2009, 389(4)∶663-667 [24] 薛茹月.基底硬度及细胞密度对骨髓间充质干细胞骨分化的影响及机理研究[J].重庆大学,2013 [25] Zouani OF, Kalisky J, Ibarboure E, et al. Effect of BMP-2 from matrices of different stiffnesses for the modulation of stem cell fate [J]. Biomaterials, 2013, 34(9)∶2157-2166 [26] Wingate K, Floren M, Tan Y, et al. Synergism of matrix stiffness and vascular endothelial growth factor on mesenchymal stem cells for vascular endothelial regeneration [J]. Tissue Eng Part A, 2011, 20(17-18)∶2503-2512 [27] He Z, Wang B, Hu C, et al. An overview of hydrogel-based intra-articular drug delivery for the treatment of osteoarthritis [J]. Colloids Surf B Biointerfaces, 2017, 154∶33-39 |