[1] Veillard F, Sztukowska M, Nowakowska Z, et al. Proteolytic processing and activation of gingipain zymogens secreted by T9SS of Porphyromonas gingivalis [J]. Biochimie, 2019, 166: 161-172. [2] O'Brien-Simpson NM, Paolini RA, Hoffmann B, et al. Role of RgpA, RgpB, and Kgp proteinases in virulence of Porphyromonas gingivalis W50 in a murine lesion model [J]. Infect Immun, 2001, 69(12): 7527-7534. [3] Naito M, Tominaga T, Shoji M, et al. PGN_0297 is an essential component of the type Ⅸ secretion system (T9SS) in Porphyromonas gingivalis: Tn-seq analysis for exhaustive identification of T9SS-related genes [J]. Microbiol Immunol, 2019, 63(1): 11-20. [4] Lasica AM, Ksiazek M, Madej M, et al. The type Ⅸ secretion system (T9SS): Highlights and recent insights into its structure and function [J]. Front Cell Infect Microbiol, 2017, 7: 215. [5] Benedyk M, Marczyk A, Chruscicka B. Type Ⅸ secretion system is pivotal for expression of gingipain-associated virulence of Porphyromonas gingivalis [J]. Mol Oral Microbiol, 2019, 34(6): 237-244. [6] Taguchi Y, Sato K, Yukitake H, et al. Involvement of an Skp-like protein, PGN_0300, in the type Ⅸ secretion system of Porphyromonas gingivalis [J]. Infect Immun, 2016, 84(1): 230-240. [7] Ono S, Nakayama M, Tachibana M, et al. Construction and characterization of a PGN_0297 mutant of Porphyromonas gingivalis: evidence of the contribution of PGN_0297 to gingipain activity [J]. Acta Med Okayama, 2019, 73(4): 315-323. [8] Shen D, Perpich JD, Stocke KS, et al. Role of the RprY response regulator in P. gingivalis community development and virulence [J]. Mol Oral Microbiol, 2020, 35(6):231-239. [9] Qiu Q, Zhang F, Wu J, et al. Gingipains disrupt F-actin and cause osteoblast apoptosis via integrin beta1 [J]. J Periodontal Res, 2018, 53(5): 762-776. [10] Takeuchi H, Sasaki N, Yamaga S, et al. Porphyromonas gingivalis induces penetration of lipopolysaccharide and peptidoglycan through the gingival epithelium via degradation of junctional adhesion molecule 1 [J]. PLoS Pathog, 2019, 15(11): e1008124. [11] Zhang F, Qiu Q, Song X, et al. Signal-regulated protein kinases/protein kinase B-p53-BH3-interacting domain death agonist pathway regulates gingipain-induced apoptosis in osteoblasts [J]. J Periodontol, 2017, 88(11): e200-e210. [12] Mo W, Luo H, Wu J, et al. Gingipains promote RANKL-induced osteoclastogenesis through the enhancement of integrin β3 in RAW264.7 cells [J]. J Mol Histol, 2020, 51(2): 147-159. [13] Gürsoy UK, Fteita D, Bikker FJ, et al. Elevated baseline salivary protease activity may predict the steadiness of gingival inflammation during periodontal healing: A 12-week follow-up study on adults [J]. Pathogens, 2020, 9(9):751. [14] Tada H, Matsuyama T, Nishioka T, et al. Porphyromonas gingivalis gingipain-dependently enhances IL-33 production in human gingival epithelial cells [J]. PLoS One, 2016, 11(4): e0152794. [15] Tada H, Nishioka T, Takase A, et al. Porphyromonas gingivalis induces the production of interleukin-31 by human mast cells, resulting in dysfunction of the gingival epithelial barrier [J]. Cell Microbiol, 2019, 21(3): e12972. [16] Jun HK, An SJ, Kim HY, et al. Inflammatory response of uric acid produced by Porphyromonas gingivalis gingipains [J]. Mol Oral Microbiol, 2020, 35(5): 222-230. [17] Jun HK, Jung YJ, Choi BK. Treponema denticola, Porphyromonas gingivalis, and Tannerella forsythia induce cell death and release of endogenous danger signals [J]. Arch Oral Biol, 2017, 73: 72-78. [18] Wilensky A, Tzach-Nahman R, Potempa J, et al. Porphyromonas gingivalis gingipains selectively reduce CD14 expression, leading to macrophage hyporesponsiveness to bacterial infection [J]. J Innate Immun, 2015, 7(2): 127-135. [19] Castro SA, Collighan R, Lambert PA, et al. Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils [J]. Cell Death Dis, 2017, 8(3): e2644. [20] Byon MJ, Kim SY, Kim JS, et al. Association of periodontitis with atherosclerotic cardiovascular diseases: A nationwide population-based retrospective matched cohort study [J]. Int J Environ Res Public Health, 2020, 17(19):7261. [21] Dominy SS, Lynch C, Ermini F, et al. Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors [J]. Sci Adv, 2019, 5(1): eaau3333. [22] Seyama M, Yoshida K, Yoshida K, et al. Outer membrane vesicles of Porphyromonas gingivalis attenuate insulin sensitivity by delivering gingipains to the liver [J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(6): 165731. [23] Lonn J, Ljunggren S, Klarstrom-Engstrom K, et al. Lipoprotein modifications by gingipains of Porphyromonas gingivalis [J]. J Periodontal Res, 2018, 53(3): 403-413. [24] Hajishengallis G. Oral bacteria and leaky endothelial junctions in remote extraoral sites [J]. FEBS J, 2021, 288(5):1475-1478. [25] Liu Y, Wu Z, Nakanishi Y, et al. Infection of microglia with Porphyromonas gingivalis promotes cell migration and an inflammatory response through the gingipain-mediated activation of protease-activated receptor-2 in mice [J]. Sci Rep, 2018, 8(1):10304. [26] Nonaka S, Nakanishi H. Secreted gingipains from Porphyromonas gingivalis induce microglia migration through endosomal signaling by protease-activated receptor 2 [J]. Neurochem Int, 2020, 140: 104840. [27] Haditsch U, Roth T, Rodriguez L, et al. Alzheimer's disease-like neurodegeneration in porphyromonas gingivalis Infected neurons with persistent expression of active gingipains [J]. J Alzheimers Dis, 2020, 75(4): 1361-1376. [28] Hosn KN, Jefferson M, Leding C, et al. Inhibitors of bacterial protease enzymes for periodontal therapy [J]. Clin Exp Dent Res, 2015, 1(1): 18-25. [29] Kariu T, Ikeda T, Nakashima K, et al. A natural anti-periodontitis agent, epimedokoreanin B, inhibits virulence activities of gingipains from Porphyromonas gingivalis[J]. Biosci Biotechnol Biochem, 2019, 83(7): 1382-1384. [30] Eltigani SA, Eltayeb MM, Bito T, et al. Argeloside I inhibits the pathogenicity of Porphyromonas gingivalis TDC60 [J]. J Biosci Bioeng, 2020, 130(6): 644-649. |