[1] Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669. [2] Raslan A, Saenz Del Burgo L, Ciriza J, et al. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine [J]. Int J Pharm, 2020, 580:119226. [3] Kumar S, Azam D, Raj S, et al. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications [J]. J Biomed Mater Res B Appl Biomater, 2016, 104(4): 732-749. [4] 刘斌,宋付祥.三维(3D)石墨烯支架的制备及其在骨组织工程领域研究概况[J].口腔医学研究,2019,35(7): 619-624. [5] Guazzo R, Gardin C, Bellin G, et al. Graphene-based nanomaterials for tissue engineering in the dental field [J]. Nanomaterials (Basel), 2018, 8(5):349. [6] Li J, Liu X, Crook JM, et al. 3D graphene-containing structures for tissue engineering [J]. Mater Today Chem, 2019, 14:100199. [7] Olszowska K, Pang JB, Wrobel PS, et al. Three-dimensional nanostructured graphene: Synthesis and energy, environmental and biomedical applications [J]. Synth Met, 2017, 234:53-85. [8] Song HS, Kwon OS, Kim JH, et al. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics [J]. Biosens Bioelectron, 2017, 89:187-200. [9] Liu F, Seo TS. A controllable self-assembly method for large-scale synthesis of graphene sponges and free-standing graphene films [J]. Adv Funct Mater, 2010, 20(12): 1930-1936. [10] Belaid H, Nagarajan S, Teyssier C, et al. Development of new biocompatible 3D printed graphene oxide-based scaffolds [J]. Mater Sci Eng C Mater Biol Appl, 2020, 110:110595. [11] Qiu JJ, Guo JS, Geng H, et al. Three-dimensional porous graphene nanosheets synthesized on the titanium surface for osteogenic differentiation of rat bone mesenchymal stem cells [J]. Carbon, 2017, 125:227-235. [12] 王婷,葛少华.氧化石墨烯在生物医学领域方面应用的研究进展[J].国际口腔医学杂志,2017,44(5): 591-595. [13] Li YF, Yuan HY, von dem Bussche A, et al. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites [J]. Proc Natl Acad Sci U S A, 2013, 110(30): 12295-12300. [14] Mu QX, Su GX, Li LW, et al. Size-dependent cell uptake of protein-coated graphene oxide nanosheets [J]. ACS Appl Mater Interfaces, 2012, 4(4): 2259-2266. [15] Lim MH, Jeung IC, Jeong J, et al. Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun N-terminal kinases [J]. Acta Biomater, 2016, 46:191-203. [16] Ding ZJ, Zhang ZJ, Ma HW, et al. In vitro hemocompatibility and toxic mechanism of graphene oxide on human peripheral blood T lymphocytes and serum albumin [J]. ACS Appl Mater Interfaces, 2014, 6(22): 19797-19807. [17] Kawamoto K, Miyaji H, Nishida E, et al. Characterization and evaluation of graphene oxide scaffold for periodontal wound healing of class II furcation defects in dog [J]. Int J Nanomedicine, 2018, 13:2365-2376. [18] Dreanca A, Sarosi C, Parvu AE, et al. Systemic and local biocompatibility assessment of graphene composite dental materials in experimental mandibular bone defect [J]. Mater, 2020, 13(11):1-17. [19] Wang W, Passarini JR, Nalesso PRL, et al. Engineered 3D printed poly(epsilon-caprolactone)/graphene scaffolds for bone tissue engineering [J]. Mater Sci Eng C-Mater Biol Appl, 2019, 100:759-770. [20] Shi S, Robey PG, Gronthos S. Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis [J]. Bone, 2001, 29(6): 532-539. [21] Dai CB, Li Y, Pan WZ, et al. Three-dimensional high-porosity chitosan/honeycomb porous carbon/hydroxyapatite scaffold with enhanced osteoinductivity for bone regeneration [J]. ACS Biomater Sci Eng, 2020, 6(1): 575-586. [22] Xie H, Chua M, Islam I, et al. CVD-grown monolayer graphene inducesos osteogenic but not odontoblastic differentiation of dental pulp stem cells [J]. Dent Mater, 2017, 33(1): 13-21. [23] Radunovic M, De Colli M, De Marco P, et al. Graphene oxide enrichment of collagen membranes improves DPSCs differentiation and controls inflammation occurrence [J]. J Biomed Mater Res Pt A, 2017, 105(8): 2312-2320. [24] Sun NJ, Yin S, Lu YZ, et al. Graphene oxide-coated porous titanium for pulp sealing: an antibacterial and dentino-inductive restorative material [J]. J Mater Chem B, 2020, 8(26): 5606-5619. [25] Saravanan S, Chawla A, Vairamani M, et al. Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo [J]. Int J Biol Macromol, 2017, 104: 1975-1985. [26] Amiryaghoubi N, Pesyan NN, Fathi M, et al. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering [J]. Int J Biol Macromol, 2020, 162: 1338-1357. [27] Ahn JH, Kim IR, Kim Y, et al. The effect of mesoporous bioactive glass nanoparticles/graphene oxide composites on the differentiation and mineralization of human dental pulp stem cells [J]. Nanomaterials, 2020, 10(4): 1-18. [28] Rodríguez-Lozano FJ, García-Bernal D, Aznar-Cervantes S, et al. Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells [J]. J Mater Sci Mater Med, 2014, 25(12): 2731-2741. [29] Vera-Sánchez M, Aznar-Cervantes S, Jover E, et al. Silk-fibroin and graphene oxide composites promote human periodontal ligament stem cell spontaneous differentiation into osteo/cementoblast-like cells [J]. Stem Cells Dev, 2016, 25(22): 1742-1754. [30] Zhou Q, Yang PS, Li XL, et al. Bioactivity of periodontal ligament stem cells on sodium titanate coated with graphene oxide [J]. Sci Rep, 2016, 6: 19343. [31] Xie H, Cao T, Gomes JV, et al. Two and three-dimensional graphene substrates to magnify osteogenic differentiation of periodontal ligament stem cells [J]. Carbon, 2015, 93: 266-275. [32] Yazid F, Luchman NA, Wahab RMA, et al. Characterization and osteogenic differentiation of human dental pulp stern cells and stem cells from exfoliated deciduous Teeth [J]. Sains Malays, 2019, 48(7): 1483-1490. [33] 谷楠,孙鑫,刘富萍,等.脱落乳牙牙髓干细胞的生物学特性[J].国际口腔医学杂志,2015,42(6): 715-719. |