[1] Ma H, Feng C, Chang J, et al. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy [J]. Acta Biomater, 2018, 79:37-59. [2] Sumida T, Otawa N, Kamata YU, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Clinical application and the comparison with conventional titanium mesh [J]. J Craniomaxillofac Surg, 2015, 43(10):2183-2188. [3] Ciocca L, Ragazzini S, Fantini M, et al. Work flow for the prosthetic rehabilitation of atrophic patients with a minimal-intervention CAD/CAM approach [J]. J Prosthet Dent, 2015, 114(1):22-26. [4] Jung GU, Jeon JY, Hwang KG, et al. Preliminary evaluation of a three-dimensional, customized, and preformed titanium mesh in peri-implant alveolar bone regeneration [J]. J Korean Assoc Oral Maxillofac Surg, 2014, 40(4):181-187. [5] Tallarico M, Park CJ, Lumbau AI, et al. Customized 3D-printed Titanium mesh developed to regenerate a complex bone defect in the aesthetic zone: A case report approached with a fully digital workflow [J]. Materials (Basel), 2020, 13(17):3874. [6] Xie Y, Li S, Zhang T, et al. Titanium mesh for bone augmentation in oral implantology: current application and progress [J]. Int J Oral Sci, 2020, 12(1): 37. [7] Cucchi A, Vignudelli E, Franceschi D, et al. Vertical and horizontal ridge augmentation using customized CAD/CAM titanium mesh with versus without resorbable membranes. A randomized clinical trial [J]. Clin Oral Implants Res, 2021, 32(12):1411-1424. [8] Mian SH, Moiduddin K, Elseufy SM, et al. Adaptive mechanism for designing a personalized cranial implant and its 3D printing using PEEK [J]. Polymers (Basel), 2022, 14(6):1266. [9] Donos N, Kostopoulos L, Tonetti M, et al. Long-term stability of autogenous bone grafts following combined application with guided bone regeneration [J]. Clin Oral Implants Res, 2005, 16(2):133-139. [10] Donos N, Kostopoulos L, Karring T. Alveolar ridge augmentation by combining autogenous mandibular bone grafts and non-resorbable membranes [J]. Clin Oral Implants Res, 2002, 13(2):185-191. [11] Li L, Wang C, Li X, et al. Research on the dimensional accuracy of customized bone augmentation combined with 3D-printing individualized titanium mesh: A retrospective case series study [J]. Clin Implant Dent Relat Res, 2021, 23(1):5-18. [12] Lizio G, Pellegrino G, Corinaldesi G, et al. Guided bone regeneration using titanium mesh to augment 3-dimensional alveolar defects prior to implant placement. A pilot study [J]. Clin Oral Implants Res, 2022, 33(6):607-621. [13] Zhang G, Miao X, Lin H, et al. A tooth-supported titanium mesh bending and positioning module for alveolar bone augmentation and improving accuracy [J]. J Esthet Restor Dent, 2023, 35(4):586-595. [14] 白丽云,季平,李显,等.不同厚度的3D打印个性化钛网的三维有限元分析[J].口腔医学研究,2019,35(1):75-79. [15] Fokas G, Vaughn VM, Scarfe WC, et al. Accuracy of linear measurements on CBCT images related to presurgical implant treatment planning: A systematic review [J]. Clin Oral Implants Res, 2018, 29 Suppl 16:393-415. [16] Xie Y, Zeng R, Yan J, et al. Introducing surface-to-surface matching technique to evaluate mandibular symmetry: A retrospective study [J]. Heliyon, 2022, 8(7):e09914. [17] Lo Giudice A, Ronsivalle V, Grippaudo C, et al. One step before 3D printing-evaluation of imaging software accuracy for 3-dimensional analysis of the mandible: A comparative study using a surface-to-surface matching technique [J]. Materials (Basel), 2020, 13(12):2798. [18] Otawa N, Sumida T, Kitagaki H, et al. Custom-made titanium devices as membranes for bone augmentation in implant treatment: Modeling accuracy of titanium products constructed with selective laser melting [J]. J Craniomaxillofac Surg, 2015, 43(7):1289-1295. |