[1] Tomokiyo A, Yoshida S, Hamano S, et al. Detection, characterization, and clinical application of mesenchymal stem cells in periodontal ligament tissue [J]. Stem Cells Int, 2018, 2018: 5450768. [2] Pelaez D, Acosta Torres Z, Ng TK, et al. Cardiomyogenesis of periodontal ligament-derived stem cells by dynamic tensile strain [J]. Cell Tissue Res, 2017, 367(2): 229-241. [3] Chen J, Zhang W, Backman LJ, et al. Mechanical stress potentiates the differentiation of periodontal ligament stem cells into keratocytes [J]. Br J Ophthalmol, 2018, 102(4): 562-569. [4] Goetzke R, Sechi A, De Laporte L, et al. Why the impact of mechanical stimuli on stem cells remains a challenge [J]. Cell Mol Life Sci, 2018, 75(18): 3297-3312. [5] Wang W, Li N, Wang M, et al. Analysis of ceRNA networks during mechanical tension-induced osteogenic differentiation of periodontal ligament stem cells [J]. Eur J Oral Sci, 2022, 130(5): e12891. [6] Chen D, Kim S, Lee S, et al. The effect of mechanical vibration on osteogenesis of periodontal ligament stem cells [J]. J Endod, 2021, 47(11): 1767-1774. [7] Wu J, Li Y, Fan X, et al. Analysis of gene expression profile of periodontal ligament cells subjected to cyclic compressive force [J]. DNA Cell Biol, 2011, 30(11): 865-873. [8] Jin SS, He DQ, Wang Y, et al. Mechanical force modulates periodontal ligament stem cell characteristics during bone remodelling via TRPV4 [J]. Cell Prolif, 2020, 53(10): e12912. [9] Panchamanon P, Pavasant P, Leethanakul C. Periostin plays role in force-induced stem cell potential by periodontal ligament stem cells [J]. Cell Biol Int, 2019, 43(5): 506-515. [10] Sun XY, Zheng GQ, Li CY, et al. Long non-coding RNA Fer-1-like family member 4 suppresses hepatocellular carcinoma cell proliferation by regulating PTEN in vitro and in vivo [J]. Mol Med Rep, 2019, 19(1): 685-692. [11] Huang Y, Liu H, Guo R, et al. Long non-coding RNA FER1L4 mediates the autophagy of periodontal ligament stem cells under orthodontic compressive force via AKT/FOXO3 pathway [J]. Front Cell Dev Biol, 2021, 9: 631181. [12] Zhang L, Liu W, Zhao J, et al. Mechanical stress regulates osteogenic differentiation and RANKL/OPG ratio in periodontal ligament stem cells by the Wnt/β-catenin pathway [J]. Biochim Biophys Acta, 2016, 1860(10): 2211-2219. [13] Huang Y, Zhang Y, Li X, et al. The long non-coding RNA landscape of periodontal ligament stem cells subjected to compressive force [J]. Eur J Orthod, 2019, 41(4): 333-342. [14] 赵艳,刘佳,秦文,等.不同等级应力对人炎症牙周膜干细胞分化及细胞骨架重组的研究[J].临床口腔医学杂志,2019,35(3): 131-135. [15] Lv P, Gao P, Tian G, et al. Osteocyte-derived exosomes induced by mechanical strain promote human periodontal ligament stem cell proliferation and osteogenic differentiation via the miR-181b-5p/PTEN/AKT signaling pathway [J]. Stem Cell Res Ther, 2020, 11(1): 1-15. [16] Wang W, Li N, Zhao Y, et al. Effect of stretch frequency on osteogenesis of periodontium during periodontal ligament distraction [J]. Orthod Craniofac Res, 2023, 26(1):53-61. [17] Suwittayarak R, Klincumhom N, Ngaokrajang U, et al. Shear stress enhances the paracrine-mediated immunoregulatory function of human periodontal ligament stem cells via the ERK signalling pathway [J]. Int J Mol Sci, 2022, 23(13): 7119. [18] Zheng L, Shi Q, Na J, et al. Platelet-derived growth factor receptor-α and β are involved in fluid shear stress regulated cell migration in human periodontal ligament cells [J]. Cell Mol Bioeng, 2018, 12(1): 85-97. [19] Li H, Deng Y, Tan M, et al. Low-intensity pulsed ultrasound upregulates osteogenesis under inflammatory conditions in periodontal ligament stem cells through unfolded protein response [J]. Stem Cell Res Ther, 2020, 11(1): 1-15. [20] Li H, Zhou J, Zhu M, et al. Low-intensity pulsed ultrasound promotes the formation of periodontal ligament stem cell sheets and ectopic periodontal tissue regeneration [J]. J Biomed Mater Res A, 2021, 109(7): 1101-1112. [21] Zhang C, Lu Y, Zhang L, et al. Influence of different intensities of vibration on proliferation and differentiation of human periodontal ligament stem cells [J]. Arch Med Sci, 2015, 11(3): 638-646. [22] Yam GH, Teo EP, Setiawan M, et al. Postnatal periodontal ligament as a novel adult stem cell source for regenerative corneal cell therapy [J]. J Cell Mol Med, 2018, 22(6): 3119-3132. [23] Kilian KA, Bugarija B, Lahn BT, et al. Geometric cues for directing the differentiation of mesenchymal stem cells [J]. Proc Natl Acad Sci U S A, 2010, 107(11): 4872-4877. [24] Hu P, Gao Q, Zheng H, et al. The role and activation mechanism of TAZ in hierarchical microgroove/nanopore topography-mediated regulation of stem cell differentiation [J]. Int J Nanomedicine, 2021, 16: 1021-1036. [25] Kim J, Kang MS, Eltohamy M, et al. Dynamic mechanical and nanofibrous topological combinatory cues designed for periodontal ligament engineering [J]. PLoS One, 2020, 15(1): e0228475. [26] Hegeds O, Juriga D, Sipos E, et al. Free thiol groups on poly(aspartamide) based hydrogels facilitate tooth-derived progenitor cell proliferation and differentiation [J]. PLoS One, 2019, 14(12):e0226363. [27] Yan XZ, van den Beucken JJP, Yuan C, et al. Evaluation of polydimethylsiloxane-based substrates for in vitro culture of human periodontal ligament cells [J]. J Biomed Mater Res A, 2019, 107(12): 2796-2805. [28] He C, Wang T, Wang Y, et al. ILK regulates osteogenic differentiation of human periodontal ligament stem cells through YAP-mediated mechanical memory [J]. Oral Dis, 2023, 29(1):274-284. [29] Riquelme MA, Gu S, Hua R, et al. Mechanotransduction via the coordinated actions of integrins, PI3K signaling and connexin hemichannels [J]. Bone Res, 2021, 9(1): 8. [30] Seetharaman S, Etienne Manneville S. Integrin diversity brings specificity in mechanotransduction [J]. Biol Cell, 2018, 110(3): 49-64. [31] Niu HY, Lin D, Tang W, et al. Surface topography regulates osteogenic differentiation of MSCs via crosstalk between FAK/MAPK and ILK/β-catenin pathways in a hierarchically porous environment [J]. ACS Biomater Sci Eng, 2017, 3(12): 3161-3175. [32] Coste B, Xiao B, Santos JS, et al. Piezo proteins are pore-forming subunits of mechanically activated channels [J]. Nature, 2012, 483(7388): 176-181. [33] Hu R, Yang ZY, Li YH, et al. LIPUS promotes endothelial differentiation and angiogenesis of periodontal ligament stem cells by activating Piezo1 [J]. Int J Stem Cells, 2022, 15(4): 372-383. [34] Gao Q, Cooper PR, Walmsley AD, et al. Role of Piezo channels in ultrasound-stimulated dental stem cells [J]. J Endod, 2017, 43(7): 1130-1136. [35] Shen X, Wu W, Ying Y, et al. A regulatory role of Piezo1 in apoptosis of periodontal tissue and periodontal ligament fibroblasts during orthodontic tooth movement [J]. Aust Endod J, 2022. [36] Shreberk Shaked M, Oren M. New insights into YAP/TAZ nucleo-cytoplasmic shuttling: new cancer therapeutic opportunities? [J]. Mol Oncol, 2019, 13(6): 1335-1341. [37] LeBlanc L, Ramirez N, Kim J. Context-dependent roles of YAP/TAZ in stem cell fates and cancer [J]. Cell Mol Life Sci, 2021, 78(9): 4201-4219. [38] Hwang JH, Lee DH, Byun MR, et al. Nanotopological plate stimulates osteogenic differentiation through TAZ activation [J]. Sci Rep, 2017, 7(1): 3632. [39] Wang Y, Hu B, Hu R, et al. TAZ contributes to osteogenic differentiation of periodontal ligament cells under tensile stress [J]. J Periodontal Res, 2020, 55(1):152-160. |