[1] Pitts NB, Zero DT, Marsh PD, et al. Dental caries [J]. Nat Rev Dis Primers, 2017, 3: 17030. [2] Bowen WH, Burne RA, Wu H, et al. Oral biofilms: Pathogens, matrix, and polymicrobial interactions in microenvironments [J]. Trends Microbiol, 2018, 26(3):229-242. [3] Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions [J]. Nat Rev Microbiol, 2018, 16(12):745-759. [4] Lemos JA, Palmer SR, Zeng L, et al.The biology of Streptococcus mutans [J]. Microbiol Spectr, 2019, 7(1):10.1128/microbiolspec.GPP3-0051-2018. [5] Valm AM. The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease [J]. J Mol Biol, 2019, 431(16):2957-2969. [6] Freires IA, Aviles-Reyes A, Kitten T, et al. Heterologous expression of Streptococcus mutans Cnm in Lactococcus lactis promotes intracellular invasion, adhesion to human cardiac tissues and virulence [J]. Virulence, 2017, 8(1):18-29. [7] Lin Y, Chen J, Zhou X, et al. Inhibition of Streptococcus mutans biofilm formation by strategies targeting the metabolism of exopolysaccharides [J]. Crit Rev Microbiol, 2021, 47(5): 667-677. [8] Chen DR, Lin HC.[Research Updates: Cariogenic Mechanism of Streptococcus mutans] [J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2022, 53(2):208-213. [9] Wang Y, Hoffmann JP, Baker SM, et al. Inhibition of Streptococcus mutans biofilms with bacterial-derived outer membrane vesicles [J]. BMC Microbiol, 2021, 21(1): 234. [10] Hoshino T, Fujiwara T. The findings of glucosyltransferase enzymes derived from oral streptococci [J]. Jpn Dent Sci Rev, 2022, 58:328-335. [11] Jing M, Zheng T, Gong T, et al. AhrC negatively regulates Streptococcus mutans arginine biosynthesis [J]. Microbiol Spectr, 2022, 10(4): e0072122. [12] Liu S, Wei Y, Zhou X, et al. Function of alanine racemase in the physiological activity and cariogenicity of Streptococcus mutans [J]. Sci Rep, 2018, 8(1): 5984. [13] Sayers EW, Cavanaugh M, Clark K, et al. GenBank [J]. Nucleic Acids Res, 2021, 49(D1):D92-D96. [14] 赖扬帆,王鹏,乔里,等.变异链球菌hit基因缺陷菌株的构建 [J]. 口腔疾病防治,2021,29(12):801-808. [15] 王鹏,樊紫萱,乔里,等. 临床变异链球菌及其412c基因缺陷菌株的功能初步分析 [J]. 实用临床医药杂志,2022,26(20): 70-77. [16] Wach A. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae [J]. Yeast, 1996, 12(3):259-265. [17] Kuwayama H, Obara S, Morio T, et al. PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors [J]. Nucleic Acids Res, 2002, 30(2):E2. [18] Taneja V, Paul S, Ganesan K. Directional ligation of long-flanking homology regions to selection cassettes for efficient targeted gene-disruption in Candida albicans [J]. FEMS Yeast Res, 2004, 4(8): 841-847. [19] Tang B, Gong T, Zhou X, et al. Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity [J]. Arch Oral Biol, 2019, 99: 190-197. [20] Rainey K, Michalek SM, Wen ZT, et al. Glycosyltransferase-mediated biofilm matrix dynamics and virulence of Streptococcus mutans [J]. Appl Environ Microbiol, 2019, 85(5):e02247-18. [21] Hajishengallis E, Parsaei Y, Klein MI, et al. Advances in the microbial etiology and pathogenesis of early childhood caries [J]. Mol Oral Microbiol, 2017, 32(1): 24-34. [22] Abraham WR. Controlling biofilms of gram-positive pathogenic bacteria [J]. Curr Med Chem, 2006, 13(13): 1509-1524. [23] Guo L, Mclean JS, Lux R, et al. The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucans on the surface of Streptococcus mutans [J]. Sci Rep, 2015, 5: 18015. [24] Burne RA. Oral streptococci. products of their environment [J]. J Dent Res, 1998, 77(3): 445-452. |