[1] Feng L, Chen H, Chen Z, et al. Associations between cortical bone-to-implant contact and microstructure derived from CBCT and implant primary stability [J]. Clin Oral Implants Res, 2023, 34(3):243-253. [2] Lubis RT, Azhari A, Pramanik F. Analysis of bone density and bone morphometry by periapical radiographs in dental implant osseointegration process [J]. Int J Dent, 2023, 2023:4763961. [3] Alghamdi HS, Jansen JA. The development and future of dental implants [J]. Dent Mater J, 2020, 39(2):167-172. [4] Avila-Ortiz G, Gonzalez-Martin O, Couso-Queiruga E, et al. The peri-implant phenotype [J]. J Periodontol, 2020, 91(3):283-288. [5] Del Amo FSL, Yu SH, Sammartino G, et al. Peri-implant soft tissue management: Cairo opinion consensus conference [J]. Int J Environ Res Public Health, 2020, 17(7):2281. [6] Kloukos D, Kalimeri E, Koukos G, et al. Gingival thickness threshold and probe visibility through soft tissue: a cross-sectional study [J]. Clin Oral Investig, 2022, 26(8):5155-5161. [7] Borges GJ, Ruiz LF, de Alencar AH, et al. Cone-beam computed tomography as a diagnostic method for determination of gingival thickness and distance between gingival margin and bone crest [J]. ScientificWorldJournal, 2015, 2015:142108. [8] Nik-Azis NM, Razali M, Goh V, et al. Assessment of gingival thickness in multi-ethnic subjects with different gingival pigmentation levels [J]. J Clin Periodontol, 2023, 50(1):80-89. [9] Nisanci YM, Koseoglu SC, Ozemre MO, et al. Assessment of gingival thickness in the maxillary anterior region using different techniques [J]. Clin Oral Investig, 2022, 26(11):6531-6538. [10] Katkar RA, Tadinada SA, Amaechi BT, et al. Optical coherence tomography[J]. Dent Clin North Am, 2018, 62(3):421-434. [11] Albrecht M, Schnabel C, Mueller J, et al. In vivo endoscopic optical coherence tomography of the healthy human oral mucosa: Qualitative and quantitative image analysis [J]. Diagnostics (Basel), 2020, 10(10):827. [12] Park JY, Chung JH, Lee JS, et al. Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study [J]. J Periodontal Implant Sci, 2017, 47(1):30-40. [13] Schneider H, Ahrens M, Strumpski M, et al. An intraoral OCT probe to enhanced detection of approximal carious lesions and assessment of restorations [J]. J Clin Med, 2020, 9(10):3257. [14] Walther J, Golde J, Albrecht M, et al. A handheld fiber-optic probe to enable optical coherence tomography of oral soft tissue [J]. IEEE Trans Biomed Eng, 2022, 69(7):2276-2282. [15] Won J, Huang PC, Spillman DR, et al. Handheld optical coherence tomography for clinical assessment of dental plaque and gingiva [J]. J Biomed Opt, 2020, 25(11):116011. [16] Surlin P, Didilescu AC, Lazar L, et al. Evaluation through the optical coherence tomography analysis of the influence of non-alcoholic fatty liver disease on the gingival inflammation in periodontal patients [J]. Diabetes Metab Syndr Obes, 2021, 14:2935-2942. [17] Surlin P, Camen A, Stratul SI, et al. Optical coherence tomography assessment of gingival epithelium inflammatory status in periodontal-Systemic affected patients [J]. Ann Anat, 2018, 219:51-56. [18] Mota CC, Fernandes LO, Cimoes R, et al. Non-invasive periodontal probing through fourier-domain optical coherence tomography [J]. J Periodontol, 2015, 86(9):1087-1094. [19] Yang Z, Pan H, Shang J, et al. Deep-learning-based automated identification and visualization of oral cancer in optical coherence tomography images [J]. Biomedicines, 2023, 11(3):802. [20] Kloukos D, Koukos G, Doulis I, et al. Gingival thickness assessment at the mandibular incisors with four methods: A cross-sectional study [J]. J Periodontol, 2018, 89(11):1300-1309. [21] Khorshed A, Vilarrasa J, Monje A, et al. Digital evaluation of facial peri-implant mucosal thickness and its impact on dental implant aesthetics [J]. Clin Oral Investig, 2023, 27(2):581-590. [22] Kakizaki S, Aoki A, Tsubokawa M, et al. Observation and determination of periodontal tissue profile using optical coherence tomography [J]. J Periodontal Res, 2018, 53(2):188-199. [23] Wang G, Le NM, Hu X, et al. Semi-automated registration and segmentation for gingival tissue volume measurement on 3D OCT images [J]. Biomed Opt Express, 2020, 11(8):4536-4547. [24] Le NM, Song S, Zhou H, et al. A noninvasive imaging and measurement using optical coherence tomography angiography for the assessment of gingiva: An in vivo study [J]. J Biophotonics, 2018, 11(12):e201800242. [25] Bednarz-Tumidajewicz M, Furtak A, Zakrzewska A, et al. Comparison of the effectiveness of the ultrasonic method and cone-beam computed tomography combined with intraoral scanning and prosthetic-driven implant planning method in determining the gingival phenotype in the healthy periodontium [J]. Int J Environ Res Public Health, 2022, 19(19):12276. [26] Vahdani N, Moudi E, Ghobadi F, et al. Evaluation of the metal artifact caused by dental implants in cone beam computed tomography images [J]. Maedica (Bucur), 2020, 15(2):224-229. [27] Navya PD, Rajasekar A. Management of inadequate width of attached gingiva using mucograft [J]. J Adv Pharm Technol Res, 2022, 13(Suppl 1):S358-S361. [28] Couso-Queiruga E, Barboza EP, Avila-Ortiz G, et al. Relationship between supracrestal soft tissue dimensions and other periodontal phenotypic features: A cross-sectional study [J]. J Periodontol, 2023, 94(8):944-955 [29] Lim HC, Lee J, Kang DY, et al. Digital assessment of gingival dimensions of healthy periodontium [J]. J Clin Med, 2021, 10(8):1550. [30] Lee JS, Jeon YS, Strauss FJ, et al. Digital scanning is more accurate than using a periodontal probe to measure the keratinized tissue width [J]. Sci Rep, 2020, 10(1):3665. [31] Baek JH, Na J, Lee BH, et al. Optical approach to the periodontal ligament under orthodontic tooth movement: a preliminary study with optical coherence tomography [J]. Am J Orthod Dentofacial Orthop, 2009, 135(2):252-259. [32] Fernandes LO, Mota C, de Melo L, et al. In vivo assessment of periodontal structures and measurement of gingival sulcus with optical coherence tomography: a pilot study [J]. J Biophotonics, 2017, 10(6-7):862-869. [33] Wei W, Choi WJ, Wang RK. Microvascular imaging and monitoring of human oral cavity lesions in vivo by swept-source OCT-based angiography [J]. Lasers Med Sci, 2018, 33(1):123-134. [34] 张浩筠,危伊萍,韩子瑶,等.种植体周表型的概念及其临床应用[J].口腔医学,2021,41(2):110-118. [35] Page RC. Gingivitis [J]. J Clin Periodontol, 1986, 13(5):345-359. [36] Le N, Subhash HM, Kilpatrick-Liverman L, et al. Noninvasive multimodal imaging by integrating optical coherence tomography with autofluorescence imaging for dental applications [J]. J Biophotonics, 2020, 13(7):e202000026. [37] Le N, Cheng H, Subhash H, et al. Gingivitis resolution followed by optical coherence tomography and fluorescence imaging: A case study [J]. J Biophotonics, 2021, 14(12):e202100191. [38] Szegedi S, Hommer N, Kallab M, et al. Repeatability and reproducibility of total retinal blood flow measurements using bi-directional doppler OCT [J]. Transl Vis Sci Technol, 2020, 9(7):34. [39] Tani T, Song YS, Yoshioka T, et al. Repeatability and reproducibility of retinal blood flow measurement using a doppler optical coherence tomography flowmeter in healthy subjects [J]. Invest Ophthalmol Vis Sci, 2017, 58(7):2891-2898. [40] Saggu A, Maguluri G, Grimble J, et al. Raman microspectroscopy/micro-optical coherence tomography approach for chairside diagnosis of periodontal diseases: A pilot study [J]. J Periodontol, 2022, 93(12):1929-1939. |