[1] Mizushima N. Autophagy process and function [J]. Genes Dev, 2007, 21(22)∶2861-2873 [2] Levine B , and Kroemer G. Autophagy in the pathogenesis of disease [J]. Cell, 2008, 132(1)∶27-42 [3] Sinha S , and Levine B. The autophagy effector Beclin 1: a novel BH3-only protein [J]. Oncogene , 2008, 27(1)∶137-148 [4] Mathew R , Karantza-Wadsworth V , and White E. Role of autophagy in cancer [J]. Nat. Rev. Cancer , 2008, 7(12)∶961-967 [5] Maiuri M C, Zalckvar E, Kimchi A, et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis [J]. Nature Reviews Molecular Cell Biology, 2007, 8(9)∶741 [6] 白宇,全海英,张桐菲,等.顺铂诱导的自噬在口腔鳞癌Tca83细胞中的作用[J].口腔医学研究,2012,28(6)∶566-569 [7] 江丽斌,秦文,刘文佳,等.低氧环境下自噬对颏舌肌卫星细胞增殖与凋亡的影响[J].口腔医学研究,2015,31(3)∶209-212 [8] Guan J L, Simon A K, Prescott M, et al. Autophagy in stem cells [J]. Autophagy, 2013, 9(6)∶830-849 [9] Bernard S, Eilers M. Control of cell proliferation and growth by Myc proteins [J]. Results Probl Cell Differ, 2006, 42∶329-342 [10] Maiuri M C, Toumelin G L, Criollo A, et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1 [J]. Embo Journal, 2007, 26(26)∶2527-2539 [11] Oberstein A, Jeffrey P D, Shi Y. Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein [J]. Journal of Biological Chemistry, 2007, 282(17)∶13123 [12] Danial N N, Korsmeyer S J. Cell death: critical control points [J]. Cell, 2004, 116(2)∶205 [13] Degenhardt K, Chen G, Lindsten T, et al. BAX and BAK mediate p53-independent suppression of tumorigenesis [J]. Cancer Cell, 2002, 2(3)∶193-203 [14] Yue Z, Jin S, Yang C, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor [J]. Proceedings of the National Academy of Sciences, 2004, 100(25)∶15077-15082 [15] White E, and DiPaola RS. The double-edged sword of autophagy modulation in cancer [J]. Clin. Cancer Res, 2009, 15(17)∶5308-5316 [16] Apel A, Zentgraf H, Buchler MW, et al. Autophagy-A double edged sword in oncology [J]. Int. J. Cancer, 2009, 125(5)∶991-995 [17] Lu Z , Luo RZ , Lu Y , et al. The tumor suppressor gene ARHI regulates autophagyand tumor dormancy in human ovarian cancer cells [J]. J. Clin. Invest, 2008, 118(12)∶3917-3929 [18] Seleverstov O, Zabirnyk O, Zscharnack M, et al. Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation [J]. Nano Lett, 2007, 6(12)∶2826-2832 [19] Stern ST, Zolnik BS, McLeland CB, et al. Induction of autophagy in porcine kidney cells by quantum dots: A common cellular response to nanomaterials [J]. Toxicol Sci, 2008, 106(1)∶140-152 [20] Mishra A, Zheng J, Tang X, et al.Silver Nanoparticle-Induced Autophagic -Lysosomal Disruption and NLRP3-Inflammasome Activation in HepG2 Cells is Size-Dependent [J]. Toxicological Sciences, 2016, 150(2)∶kfw011 [21] Zhang Q, Yang WJ, Man N, et al. Autophagy-mediated chemosensitization in cancer cells by fullerene C60 nanocrystal [J]. Autophagy, 2009,5(8)∶1107-1117 [22] Wei PF, Zhang L, Lu Y, et al. C60(Nd) nanoparticles enhance chemotherapeutic susceptibility of cancer cells by modulation of autophagy [J]. Nanotechnology, 2010, 21(49)∶495101 [23] 崔之芬,诸颖,李晓明,等.纳米颗粒诱导的自噬效应及在生物医药领域的应用[J].科学通报,2013,58(34)∶3521-3529 [24] Chen GY, Yang HJ, Lu CH, et al. Simultaneous induction of autophagy and toll-like receptor signaling pathways by graphene oxide [J]. Biomaterials, 2012, 33(27)∶6559-6569 [25] Markovic ZM, Ristic BZ, Arsikin KM, et al. Graphene quantum dots as autophagy-inducing photodynamic agents [J]. Biomaterials, 2012, 33(29)∶7084-7092 [26] Fude W, Chan J, Hao L, et al. Effects of fullerene C?? nanoparticles on A549 cells [J]. Environmental Toxicology & Pharmacology, 2014, 37(2)∶656-61 [27] Li JJ, Hartono D, Ong CN, et al. Autophagy and oxidative stress associated with gold nanoparticles [J]. Biomaterials, 2010, 31(23)∶5996-6003 [28] Panzarini E, Mariano S, Dini L. Glycans coated silver nanoparticles induces autophagy and necrosis in HeLa cells [C]. Nanoforum, 2015, 1667(1)∶020017 [29] Farah MA, Ali MA, Chen SM, et al. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species [J]. Colloids & Surfaces B Biointerfaces, 2016, 141∶158 [30] Zhang YJ, Zheng F, Yang TL, et al. Tuning the autophagy-inducing activity of lanthanide-based nanocrystals through specific surface-coating peptides [J]. Nat Mater, 2012, 11(9)∶817-826 [31] Khan MI, Mohammad A, Patil G, et al. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles [J]. Biomaterials, 2012, 33(5)∶1477-1488 [32] Sun TT, Yan YW, Zhao Y, et al. Copper oxide nanoparticles induce autophagic cell death in A549 cells [J]. PLoS One, 2012, 7(8)∶e43442 [33] Li HY, Li YH, Jiao J, et al. Alpha-alumina nanoparticles induce efficient autophagy-dependent cross-presentation and potent antitumour response [J]. Nat Nanotech, 2011, 6(10)∶645-650 [34] Lu Y, Zhang L, Li J, et al. MnO nanocrystals: A platform for integration of MRI and genuine autophagy induction for chemotherapy [J]. AdvFunct Mater, 2013(12), 23∶1534-1546 [35] Yu KN, Yoon TJ, Tehrani AM, et al. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation [J]. Toxicol in Vitro, 2013, 27(4)∶1187-1195 [36] Chen Y, Yang LS, Feng C, et al. Nano neodymium oxide induces massive vacuolization and autophagic cell death in non-small cell lung cancer NCI-H460 cells [J]. Biochem Biophys Res Commun, 2005, 337(1)∶52-60 [37] Yu L, Lu Y, Man N, et al. Rare earth oxide nanocrystals induce autophagy in HeLa cells [J]. Small, 2009, 5(24)∶2784-2787 [38] Zhang Y, Yu CG, Huang GY, et al. Nano rare earth oxides induced size dependent vacuolization, an independent pathway from autophagy [J]. Int J Nanomed, 2010, 5(24)∶601-609 [39] Man N, Yu L, Yu SH, et al. Rare earth oxide nanocrystals as a new class of autophagy inducers [J]. Autophagy, 2010, 6(2)∶310-311 |