[1] Zhang YR, Du W, Zhou XD, et al. Review of research on the mechanical properties of the human tooth[J]. Int J Oral Sci, 2014, 6(2): 61-69. [2] Yeom B, Sain T, Lacevic N, et al. Abiotic tooth enamel[J]. Nature, 2017, 543(7643):95-98. [3] Munch E, Launey ME, Alsem DH, et al. Tough, bio-inspired hybrid materials[J]. Science, 2008, 322(5907):1516-1520. [4] He LH, Swain MV. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics[J]. J Mech Behav Biomed, 2008, 1(1):18-29. [5] Yahyazadehfar M, Arola D. The role of organic proteins on the crack growth resistance of human enamel[J]. Acta Biomater, 2015, 19:33-45. [6] Özcoban H, Yilmaz ED, Schneider GA. Hierarchical microcrack model for materials exemplified at enamel[J]. Dent Mater, 2018, 34(1):69-77. [7] Ruan Q, Moradian-Oldak J. Amelogenin and enamel biomimetics[J]. J Mater Chem B, 2015, 3(16):3112-3129. [8] Bajaj D, Arola D. Role of prism decussation on fatigue crack growth and fracture of human enamel[J]. Acta Biomater, 2009, 5(8):3045-3056. [9] 葛俊,崔福斋,吉宁,等.人牙釉质分级结构的观察[J]. 牙体牙髓牙周病学杂志, 2006, 16(2): 61-66. [10] An B, Wang R, Arola D, et al. The role of property gradients on the mechanical behavior of human enamel[J]. J Mech Behav Biomed, 2012, 9:63-72. [11] Yahyazadehfar M, Bajaj D, Arola DD. Hidden contributions of the enamel rods on the fracture resistance of human teeth[J]. Acta Biomater, 2013, 9(1):4806-4814. [12] White SN, Luo W, Paine ML, et al. Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel[J]. J Dent Res, 2001, 80(1):321-326. [13] He LH, Swain MV. Contact induced deformation of enamel[J]. Appl Phys Lett, 2007, 90(17):171916. [14] Ji B, Gao H. Mechanical properties of nanostructure of biological materials[J]. J Mech Phys Solids, 2004, 52(9):1963-1990. [15] Thompson JB, Kindt JH, Drake B, et al. Bone indentation recovery time correlates with bond reforming time[J]. Nature, 2001, 414(6865):773-776. [16] Zhang Q, Gao S, Min J, et al. Graded viscoelastic behavior of human enamel by nanoindentation[J]. Mater Lett, 2016, 179:126-129. [17] 陈彦凝,于皓. 激光牙齿漂白副作用的研究进展[J]. 口腔医学研究, 2017, 33(2):225-227. [18] Ten Cate AR. Oral histology: development, structure and function[M]. St Louis: Mosby, 1998: 141-190. [19] Chan YL, Ngan AH, King NM. Nano-scale structure and mechanical properties of the human dentine-enamel junction[J]. J Mech Behav Biomed, 2011, 4(5):785-795. [20] 徐官宝,郑靖. 牙本质层对人牙力学性能的影响[J]. 润滑与密封, 2016, 41(1):32-36. [21] Xu HH, Smith DT, Jahanmir S, et al. Indentation damage and mechanical properties of human enamel and dentin[J]. J Dent Res, 1998, 77(3): 472-480. [22] Nalla RK, Kinney JH, Ritchie RO. Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms[J]. Biomaterials, 2003, 24(22):3955-3968. [23] Wang Z, Wang K, Xu W, et al. Mapping the mechanical gradient of human dentin-enamel-junction at different intratooth locations[J]. Dent Mater, 2018, 34(3):376-388. [24] Du J, Niu X, Rahbar N, et al. Bio-inspired dental multilayers: Effects of layer architecture on the contact-induced deformation[J]. Acta Biomater, 2013, 9(2):5273-5279. [25] He LH, Swain MV. Influence of environment on the mechanical behavior of mature human enamel[J]. Biomaterials, 2007, 28(30):4512-4520. [26] Hua L, Zheng J, Zhou Z, et al. A water-switchable interfacial bonding on tooth enamel surface[J]. ACS Biomater Sci Eng, 2018, 4 (7): 2364-2369. [27] Zhang J, Wang C, Yang F, et al. Nanoindentation creep behavior of enamel biological nanocomposites[J]. RSC Adv, 2014, 4(77):41003-41009. [28] Schneider GA, He LH, Swain MV. Viscous flow model of creep in enamel[J]. J Appl Phys, 2008, 103(1):267-280. |