[1] Tang D, Tare RS, Yang LY, et al. Biofabrication of bone tissue: Approaches, challenges and translation for bone regeneration [J]. Biomaterials, 2016, 83:363-382. [2] Li J, Wang Z, Guo Z, et al. The use of allograft shell with intramedullary vascularized fibula graft for intercalary reconstruction after diaphyseal resection for lower extremity bony malignancy [J]. J Surg Oncol, 2010, 102(5):368-374. [3] 张铁,胡丽,蔡志祥,等.载脱钙骨基质的3D打印多孔生物陶瓷的制备及其成骨性能研究[J].生物骨科材料与临床研究,2021,18(6):1-6. [4] 张铁,祝超,叶莹,等.微创可注射双相骨水泥的制备及性能表征和复合DBM成骨能力研究[J].生物骨科材料与临床研究,2019,16(4):46-50. [5] 左健,康建敏,潘乐. 同种异体骨移植用于骨缺损修复的应用现状[J].中国组织工程研究,2012,16(18):3395-3398. [6] 王迎军,杜昶,赵娜如,等.仿生人工骨修复材料研究[J].华南理工大学学报(自然科学版),2012,40(10):51-58. [7] 张志达,江晓兵,沈耿杨,等.磷酸钙及硫酸钙支架在骨组织工程中的研究进展[J].中国组织工程研究,2016,20(8):1203-1209. [8] 高尔涵,屈志国.人工骨移植材料修复种植区骨缺损的临床进展[J].内蒙古医学杂志,2012,44(12):1460-1463. [9] Yan F, Liu Z, Zhang T, et al. Biphasic injectable bone cement with Fe3O4/GO nanocomposites for the minimally invasive treatment of tumor-induced bone destruction [J]. ACS Biomater Sci Eng, 2019, 5(11): 5833-5843. [10] Lei Q, Chen Y, Gao S, et al. Enhanced magnetothermal effect of high porous bioglass for both bone repair and antitumor therapy [J]. Materials & Design, 2023, 227:111754. [11] 程丽佳,张星宇,史铀,等.人工骨的研究现状[J].解剖学研究,2016,38(4):309-310. [12] Canellas JVDS, Drugos L, Ritto FG, et al. Xenograft materials in maxillary sinus floor elevation surgery: a systematic review with network meta-analyses [J]. Br J Oral Maxillofac Surg, 2021, 59(7):742-751. [13] 赵铭,郑启新.异种煅烧骨材料的研究进展[J].国际生物医学工程杂志,2003,26(4):188-192. [14] 李芳,伍超,石前会,等.异种煅烧骨材料修复骨缺损:特点,优势与问题[J].中国组织工程研究,2020,24(16):2592-2598. [15] Tadic D, Epple M. A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone [J]. Biomaterials, 2004, 25(6):987-994. [16] Figueiredo M, Fernando A, Martins G, et al. Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone [J]. Ceramics International, 2010, 36(8):2383-2393. [17] 李龙飞,李志鹏,刘润恒,等.不同烧结温度对猪骨羟基磷灰石理化性能的影响[J].中华口腔医学研究杂志(电子版),2017,11(3):164-168. [18] 白玉龙,赵彦涛,沈亚俊,等.3种植骨材料在大鼠下颌骨骨缺损修复实验中的长期效果观察[J].中国骨与关节损伤杂志,2019,34(6):27-30. [19] Londoño-Restrepo SM, Ramirez-Gutierrez CF, del Real A, et al. Study of bovine hydroxyapatite obtained by calcination at low heating rates and cooled in furnace air [J]. J Mater Sci Mater Med, 2016, 51(9):4431-4441. [20] Forero-Sossa PA, Salazar-Martínez JD, Giraldo-Betancur AL, et al. Temperature effect in physicochemical and bioactive behavior of biogenic hydroxyapatite obtained from porcine bones [J]. Sci Rep, 2021, 11(1):11069. [21] Siddiqi SA, Azhar U. Carbonate substituted hydroxyapatite. Abdul Samad Khan, Aqif Anwar Chaudhry. Handbook of Ionic Substituted Hydroxyapatites[M]. Woodhead Publishing, 2020: 149-173. [22] De Carvalho B, Rompen E, Lecloux G, et al. Effect of sintering on in vivo biological performance of chemically deproteinized bovine hydroxyapatite [J]. Materials (Basel), 2019, 12(23):3946. [23] Benke D, Olah A, Möhler H. Protein-chemical analysis of Bio-Oss bone substitute and evidence on its carbonate content [J]. Biomaterials, 2001, 22(9):1005-1012. [24] Rombouts C, Jeanneau C, Camilleri J, et al.Characterization and angiogenic potential of xenogeneic bone grafting materials: Role of periodontal ligament cells [J]. Dent Mater J, 2016, 35(6):900-907. |