[1] Izquierdo PP, de Biasi RS, Elias CN, et al. Martensitic transformation of austenitic stainless steel orthodontic wires during intraoral exposure [J]. Am J Orthod Dentofacial Orthop, 2010, 138(6):714.e1-5. [2] Muguruma T, Iijima M, Brantley WA, et al. Frictional and mechanical properties of diamond-like carbon-coated orthodontic brackets [J]. Eur J Orthod, 2013, 35(2):216-222. [3] Burrow SJ. Friction and resistance to sliding in orthodontics: a critical review [J]. Am J Orthod Dentofacial Orthop, 2009, 135(4):442-447. [4] Ohgoe Y, Kobayashi S, Ozeki K, et al. Reduction effect of nickel ion release on a diamond-like carbon film coated onto an orthodontic archwire [J]. Thin Solid Films, 2006, 497(1-2):218-222. [5] Kang T, Huang SY, Huang JJ, et al. The effects of diamond-like carbon films on fretting wear behavior of orthodontic archwire-bracket contacts [J]. J Nanosci Nanotechnol, 2015, 15(6):4641-4647. [6] 郭静,米丛波.4种镍钛正畸弓丝钛离子析出量的体外实验研究[J].口腔医学研究,2015,31(4):328-331. [7] 林久祥.固定矫正器及技术的新进展[J].口腔医学研究,2008,24(5):481-483. [8] Kao CT, Guo JU, Huang TH, et al. Comparison of friction force between corroded and noncorroded titanium nitride plating of metal brackets [J]. Am J Orthod Dentofacial Orthop, 2011, 139(5):594-600. [9] 邵红红,彭玉婷,姜秀英,等.医用镍钛合金表面多层薄膜的制备及摩擦磨损和耐腐蚀性能[J].功能材料,2014,45(14):14145-14149. [10] Lifeng Z, Yan H, Dayun Y, et al. The underlying biological mechanisms of biocompatibility differences between bare and TiN-coated NiTi alloys [J]. Biomed Mater, 2011, 6(2):025012. [11] Cao BC, Wang YH, Li N, et al. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO2-xNy thin film and examination of its antimicrobial performance [J]. Dent Mater J, 2013, 32(2):311-316. [12] Xu QC, Wellia DV, Sk MA, et al. Transparent visible light activated C-N-F-codoped TiO2 films for self-cleaning applications [J]. J Photoch Photobio A, 2010, 210(2-3):181-187. [13] Choi JY, Kim KH, Choy KC, et al. Photocatalytic antibacterial effect of TiO2 film formed on Ti and TiAg exposed to Lactobacillus acidophilus [J]. J Biomed Mater Res B, 2007, 80B(2):353-359. [14] Krishnan V, Krishnan A, Remya R, et al. Development and evaluation of two PVD-coated beta-titanium orthodontic archwires [J]. Acta Biomater, 2011, 7(4):1913-1927. [15] Pulikkottil VJ, Chidambaram S, Bejoy PU, et al. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: An in vitro study [J]. J Pharm Bioallied Sci, 2016, 8(Suppl 1):S96-S99. [16] Ramalingam A, Kailasam V, Padmanabhan S, et al. The effect of topical fluoride agents on the physical and mechanical properties [J]. Aust Orthod J, 2008, 24(1):26-31. [17] Kobayashi S, Ohgoe Y, Ozeki K, et al. Dissolution effect and cytotoxicity of diamond-like carbon coatings on orthodontic archwires [J]. J Mater Sci Mater Med, 2007, 18(12):2263-2268. [18] Huang SY, Huang JJ, Kang T, et al. Coating NiTi archwires with diamond-like carbon films: reducing fluoride-induced corrosion and improving frictional properties [J]. J Mater Sci Mater Med, 2013, 24(10):2287-2292. [19] 曹宝成.TiO(2-x)Nx薄膜托槽的制备、性能及生物相容性研究[D].兰州: 兰州大学, 2013. [20] 张晟.纳米Ag/TiO2涂层托槽的研制及其抗菌性能研究[D].广州: 南方医科大学, 2012. [21] 吴震弘.TiO2薄膜在不锈钢上防腐机理的研究及应用[D].杭州: 浙江理工大学, 2014. |