[1] Presland RB, Jurevic RJ. Making sense of the epithelial barrier: what molecular biology and genetics tell us about the functions of oral mucosal and epidermal tissues [J]. J Dent Educ, 2002, 66(4)∶564-74 [2] Young HE, Black AC, Jr. Adult stem cells [J]. Anat Rec A Discov Mol Cell Evol Biol,2004,276(1)∶75-102 [3] Mascre G, Dekoninck S, Drogat B, et al. Distinct contribution of stem and progenitor cells to epidermal maintenance [J]. Nature, 2012, 489(7415)∶257-262 [4] Kristoffersen EK, Caffesse RG, Nasjleti CE, et al. Ultrastructural study of induced keratinization in sulcular gingival epithelium in rhesus monkeys [J]. Acta Odontol Scand, 1983, 41(4)∶227-240 [5] Smith PC, Cceres M, Martínez C, et al. Gingival wound healing: an essential response disturbed by aging? [J]. J Dent Res, 2015, 94(3)∶395-402 [6] Greiling D, Clark RA. Fibronectin provides a conduit for fibroblast transmigration from collagenous stroma into fibrin clot provisional matrix [J]. J Cell Sci, 1997, 110 ( Pt 7)∶861-870 [7] Hay ED. An overview of epithelio-mesenchymal transformation [J]. Acta Anat (Basel), 1995, 154(1)∶8-20 [8] Nieto MA, Huang RY, Jackson RA, et al. EMT: 2016[J]. Cell, 2016, 166(1)∶21-45 [9] Kim SS, Michelsons S, Creber K, et al. Nifedipine and phenytoin induce matrix synthesis, but not proliferation, in intact human gingival connective tissue ex vivo [J]. J Cell Commun Signal, 2015, 9(4)∶361-375 [10] Eslami A, Gallant-Behm CL, Hart DA, et al. Expression of integrin alphavbeta6 and TGF-beta in scarless vs scar-forming wound healing[J]. J Histochem Cytochem, 2009, 57(6)∶543-557 [11] Qian LW, Fourcaudot AB, Yamane K, et al. Exacerbated and prolonged inflammation impairs wound healing and increases scarring [J]. Wound Repair Regen, 2016, 24(1)∶26-34 [12] Arnoux V, Nassour M, L’Helgoualc’h A, et al. Erk5 controls Slug expression and keratinocyte activation during wound healing [J]. Mol Biol Cell, 2008, 19(11)∶4738-4749 [13] Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors [J]. Nat Cell Biol, 2014, 16(6)∶488-494 [14] Rinnerthaler M, Streubel MK, Bischof J, et al. Skin aging, gene expression and calcium [J]. Exp Gerontol, 2015, 68∶59-65 [15] Palazzo E, Morandi P, Lotti R, et al. Notch cooperates with survivin to maintain stemness and to stimulate proliferation in human keratinocytes during ageing [J]. Int J Mol Sci, 2015, 16(11)∶26291-26302 [16] Walsh CM, Bautista DM, Lumpkin EA. Mammalian touch catches up [J]. Curr Opin Neurobiol, 2015, 34∶133-139 [17] Hsieh ST, Lin WM. Modulation of keratinocyte proliferation by skin innervation [J]. J Invest Dermatol, 1999, 113(4)∶579-586 [18] Roggenkamp D, Kopnick S, Stab F, et al. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model [J]. J Invest Dermatol, 2013, 133(6)∶1620-1628 [19] Bikle DD, Xie Z, Tu CL. Calcium regulation of keratinocyte differentiation [J]. Expert Rev Endocrinol Metab, 2012, 7(4)∶461-472 [20] Cai S, Fatherazi S, Presland RB, et al. TRPC channel expression during calcium-induced differentiation of human gingival keratinocytes [J]. J Dermatol Sci, 2005, 40(1)∶21-28 [21] Poumay Y, Coquette A. Modelling the human epidermis in vitro: tools for basic and applied research [J]. Arch Dermatol Res, 2007, 298(8)∶361-369 [22] Lee HJ, Guo HY, Lee SK, et al. Effects of nicotine on proliferation, cell cycle, and differentiation in immortalized and malignant oral keratinocytes [J]. J Oral Pathol Med, 2005, 34(7)∶436-443 [23] Arredondo J, Chernyavsky AI, Jolkovsky DL, et al. Receptor-mediated tobacco toxicity: acceleration of sequential expression of alpha5 and alpha7 nicotinic receptor subunits in oral keratinocytes exposed to cigarette smoke [J]. FASEB J, 2008, 22(5)∶1356-1368 [24] Nakamura S, Saitoh M, Yamazaki M, et al. Nicotine induces upregulated expression of beta defensin-2 via the p38MAPK pathway in the HaCaT human keratinocyte cell line [J]. Med Mol Morphol, 2010, 43(4)∶204-210 |