[1] Roy AK, Dixit N, Punde P, et al. Stress distribution in cortical bone around the basal implant-A finite element analysis [J]. J Pharm Bioallied Sci, 2021, 13 (Suppl 1):S633-S636. [2] Stocchero M, Jinno Y, Toia M, et al. In silico multi-scale analysis of remodeling peri-implant cortical bone: a comparison of two types of bone structures following an undersized and non-undersized technique [J]. J Mech Behav Biomed Mater, 2020, 103:103598. [3] Sayyedi A, Rashidpour M, Fayyaz A, et al. Comparison of stress distribution in alveolar bone with different implant diameters and vertical cantilever length via the finite element method [J]. J Long Term Eff Med Implants, 2019, 29 (1):37-43. [4] Brånemark PI, Adell R, Breine U, et al. Intra-osseous anchorage of dental prostheses. I. Experimental studies [J]. Scand J Plast Reconstr Surg 1969, 3 (2):81-100. [5] Schroeder A, van der Zypen E, Stich H, et al. The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces [J]. J Maxillofac Surg, 1981, 9(1):15-25. [6] Buser D, von Arx T, ten Bruggenkate C, et al. Basic surgical principles with ITI implants [J]. Clin Oral Implants Res, 2000, 11 Suppl 1:59-68. [7] Schwarz F, Alcoforado G, Nelson K, et al. Impact of implant-abutment connection, positioning of the machined collar/microgap, and platform switching on crestal bone level changes. Camlog Foundation Consensus Report[J]. Clin Oral Implants Res, 2014, 25(11):1301-1303. [8] Palacios-Garzón N, Velasco-Ortega E, López-López J. Bone loss in implants placed at subcrestal and crestal level: A systematic review and meta-analysis [J]. Materials (Basel), 2019, 12(1):154. [9] Gao E, Hei WH, Park JC, et al. Bone-level implants placed in the anterior maxilla: an open-label, single-arm observational study [J]. J Periodontal Implant Sci, 2017, 47(5): 312-327. [10] Kalavathy N, Sridevi J, Gehlot R, et al. "Platform switching": serendipity [J]. Indian J Dent Res, 2014, 25(2): 254-259. [11] Gupta S, Sabharwal R, Nazeer J, et al. Platform switching technique and crestal bone loss around the dental implants: A systematic review [J]. Ann Afr Med, 2019, 18 (1):1-6. [12] Soliman G, Guazzato M, Klineberg I, et al. Influence of platform switching, abutment design and connection protocols on the stability of peri-implant tissues. A systematic review [J]. Eur J Prosthodont Restor Dent, 2021, 29(4):194-207. [13] Taheri M, Akbari S, Shamshiri AR, et al. Marginal bone loss around bone-level and tissue-level implants: A systematic review and meta-analysis [J]. Ann Anat, 2020, 231:151525. [14] Meijndert CM, Raghoebar GM, Vissink A, et al. The effect of implant-abutment connections on peri-implant bone levels around single implants in the aesthetic zone: A systematic review and a meta-analysis [J]. Clin Exp Dent Res, 2021, 7(6):1025-1036. [15] 夏海斌.前牙区种植义齿穿龈轮廓的影响因素与美学考量[J].中华口腔医学杂志,2021,56(12):1165-1171. [16] Cheng GL, Leblebicioglu B, Li J, et al. Soft tissue healing around platform-switching and platform-matching single implants: A randomized clinical trial [J]. J Periodontol, 2020, 91(12):1609-1620. [17] Farronato D, Manfredini M, Farronato M, et al. Behavior of soft tissue around platform-switched implants and non-platform-switched implants: A comparative three-year clinical study [J]. J Clin Med, 2021, 10 (13):2955. [18] Rodríguez X, Navajas A, Vela X, et al. Arrangement of peri-implant connective tissue fibers around platform-switching implants with conical abutments and its relationship to the underlying bone: A human histologic study [J]. Int J Periodontics Restorative Dent, 2016, 36(4):533-540. [19] Huang B, Meng H, Zhu W, et al. Influence of placement depth on bone remodeling around tapered internal connection implants: a histologic study in dogs [J]. Clin Oral Implants Res, 2015, 26(8):942-949. [20] 付宏宇,陈楠,冯广智.Ⅱ类和Ⅲ类骨质植入深度对平台转换种植体周围骨应力分布影响的有限元分析[J].解剖学报,2018,49(2):258-263. [21] Sasada Y, Cochran DL. Implant-abutment connections: A review of biologic consequences and peri-implantitis implications [J]. Int J Oral Maxillofac Implants, 2017, 32(6):1296-1307. [22] Palombo D, Rahmati M, Vignoletti F, et al. Hard and soft tissue healing around implants with a modified implant neck configuration: An experimental in vivo preclinical investigation [J]. Clin Oral Implants Res, 2021, 32(9):1127-1141. [23] Ausiello P, Tribst JPM, Ventre M, et al. The role of cortical zone level and prosthetic platform angle in dental implant mechanical response: A 3D finite element analysis [J]. Dent Mater, 2021, 37(11):1688-1697. [24] Montemezzi P, Ferrini F, Pantaleo G, et al. Dental implants with different neck design: A prospective clinical comparative study with 2-year follow-up [J]. Materials (Basel), 2020, 13(5):1029. [25] Valles C, Rodríguez-Ciurana X, Clementini M, et al. Influence of subcrestal implant placement compared with equicrestal position on the peri-implant hard and soft tissues around platform-switched implants: a systematic review and meta-analysis [J]. Clin Oral Investig, 2018, 22(2):555-570. [26] Hansson S. The implant neck: smooth or provided with retention elements. A biomechanical approach [J]. Clin Oral Implants Res, 1999, 10(5):394-405. [27] Patil YB, Asopa SJ, Deepa, et al. Influence of implant neck design on crestal bone loss: A comparative study [J]. Niger J Surg, 2020, 26(1):22-27. [28] Hussein FA, Salloomi KN, Abdulrahman BY, et al. Effect of thread depth and implant shape on stress distribution in anterior and posterior regions of mandible bone: A finite element analysis [J]. Dent Res J (Isfahan), 2019, 16(3):200-207. [29] Chun HJ, Cheong SY, Han JH, et al. Evaluation of design parameters of osseointegrated dental implants using finite element analysis [J]. J Oral Rehabil, 2002, 29(6):565-574. [30] Jin ZH, Peng MD, Li Q. The effect of implant neck microthread design on stress distribution of peri-implant bone with different level: A finite element analysis [J]. J Dent Sci, 2020, 15(4):466-471. [31] Al-Zordk W, Ghazy M, El-Anwar M. Stress analysis around reduced-diameter Zirconia and Titanium one-piece implants with and without microthreads in the neck: Experimental and finite element analysis [J]. Int J Oral Maxillofac Implants, 2020, 35(2):305-312. [32] Guarnieri R, Grande M, Zuffetti F, et al. Incidence of peri-implant diseases on implants with and without laser-microgrooved collar: A 5-year retrospective study carried out in private practice patients [J]. Int J Oral Maxillofac Implants, 2018, 33(2):457-465. [33] Javed F, Ahmed HB, Crespi R, et al. Role of primary stability for successful osseointegration of dental implants: Factors of influence and evaluation [J]. Interv Med Appl Sci, 2013, 5(4):162-167. [34] Chiang HJ, Hsu HJ, Peng PW, et al. Early bone response to machined, sandblasting acid etching (SLA) and novel surface-functionalization (SLAffinity) titanium implants: characterization, biomechanical analysis and histological evaluation in pigs [J]. J Biomed Mater Res A, 2016, 104(2):397-405. [35] Callejas JA, Brizuela A, Ríos-Carrasco B, et al. The characterization of Titanium particles released from bone-level Titanium dental implants: Effect of the size of particles on the Ion release and cytotoxicity behaviour. Materials (Basel), 2022, 15(10):3636. [36] Buser D, Sennerby L, De Bruyn H. Modern implant dentistry based on osseointegration: 50 years of progress, current trends and open questions [J]. Periodontol 2000, 2017, 73(1):7-21. [37] Hermann JS, Jones AA, Bakaeen LG, et al. Influence of a machined collar on crestal bone changes around titanium implants: a histometric study in the canine mandible [J]. J Periodontol, 2011, 82(9):1329-1338. |