[1] 王晓璇,张茂奇,曹正国.从循证医学角度探究牙周炎与全身疾病的关系及伴全身疾病牙周炎的治疗策略[J].中华口腔医学杂志,2022,57(8):874-879. [2] Genco RJ, Sanz M. Clinical and public health implications of periodontal and systemic diseases: An overview [J]. Periodontol 2000, 2020, 83(1): 7-13. [3] Aarabi G, Zeller T, Seedorf H, et al. Genetic susceptibility contributing to periodontal and cardiovascular disease [J]. J Dent Res, 2017, 96(6): 610-617. [4] Alloubani A, Nimer R, Samara R. Relationship between hyperlipidemia, cardiovascular disease and stroke: A systematic review [J]. Curr Cardiol Rev, 2021, 17(6): e051121189015. [5] Stewart J, McCallin T, Martinez J, et al. Hyperlipidemia [J]. Pediatr Rev, 2020, 41(8): 393-402. [6] 闫福华,黄悦臻.牙周炎与高脂血症交互作用及致肠道菌群失调的研究进展[J].口腔医学研究,2021,37(2): 95-100. [7] Xu J, Duan X. Association between periodontitis and hyperlipidaemia: A systematic review and meta-analysis [J]. Clin Exp Pharmacol Physiol, 2020, 47(11): 1861-1873. [8] Yoo W, Zieba JK, Foegeding NJ, et al. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide [J]. Science, 2021, 373(6556): 813-818. [9] Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease [J]. Nature, 2011, 472(7341): 57-63. [10] Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk [J]. N Engl J Med, 2013, 368(17): 1575-1584. [11] Xiao L, Huang L, Zhou X, et al. Experimental periodontitis deteriorated atherosclerosis associated with trimethylamine N-oxide metabolism in mice [J]. Front Cell Infect Microbiol, 2021, 11: 820535. [12] Zhou J, Chen S, Ren J, et al. Association of enhanced circulating trimethylamine N-oxide with vascular endothelial dysfunction in periodontitis patients [J]. J Periodontol, 2022, 93(5): 770-779. [13] Kuraji R, Fujita M, Ito H, et al. Effects of experimental periodontitis on the metabolic system in rats with diet-induced obesity (DIO): an analysis of serum biochemical parameters [J]. Odontology, 2018, 106(2): 162-170. [14] Li X, Su C, Jiang Z, et al. Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome [J]. NPJ Biofilms Microbiomes, 2021, 7(1): 36. [15] Wang Q, Guo M, Liu Y, et al. Bifidobacterium breve and bifidobacterium longum attenuate choline-induced plasma trimethylamine N-oxide production by modulating gut microbiota in mice [J]. Nutrients, 2022, 14(6):1222. [16] Pedersen AM, Bardow A, Jensen SB, et al. Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion [J]. Oral Dis, 2002, 8(3): 117-129. [17] Bao J, Li L, Zhang Y, et al. Periodontitis may induce gut microbiota dysbiosis via salivary microbiota [J]. Int J Oral Sci, 2022, 14(1): 32. [18] Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism [J]. Rev Endocr Metab Disord, 2019, 20(4): 461-472. [19] Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review [J]. Antonie Van Leeuwenhoek, 2020, 113(12): 2019-2040. [20] Zhang Y, Wang Y, Ke B, et al. TMAO: how gut microbiota contributes to heart failure [J]. Transl Res, 2021, 228: 109-125. [21] Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis [J]. Nat Med, 2013, 19(5): 576-585. [22] Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis [J]. Cell, 2015, 163(7): 1585-1595. [23] Zafar H, Saier MH Jr. Gut Bacteroides species in health and disease [J]. Gut Microbes, 2021, 13(1): 1-20. [24] Cho CE, Taesuwan S, Malysheva OV, et al. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial [J]. Mol Nutr Food Res, 2017, 61(1). [25] Smith BJ, Miller RA, Ericsson AC, et al. Changes in the gut microbiome and fermentation products concurrent with enhanced longevity in acarbose-treated mice [J]. BMC Microbiol, 2019, 19(1): 130. [26] Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases [J]. Front Immunol, 2019, 10: 277. [27] Surana NK, Kasper DL. Moving beyond microbiome-wide associations to causal microbe identification [J]. Nature, 2017, 552(7684): 244-247. [28] Nakajima M, Arimatsu K, Kato T, et al. Oral administration of P. gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver [J]. PLoS One, 2015, 10(7): e0134234. [29] Xing T, Liu Y, Cheng H, et al. Ligature induced periodontitis in rats causes gut dysbiosis leading to hepatic injury through SCD1/AMPK signalling pathway [J]. Life Sci, 2022, 288: 120162. |