口腔医学研究 ›› 2023, Vol. 39 ›› Issue (10): 917-922.DOI: 10.13701/j.cnki.kqyxyj.2023.10.013

• 口腔颌面外科学研究 • 上一篇    下一篇

深度学习图片分类模型ResNet-18用于判定口腔鳞状细胞癌浸润方式的初步研究

吴天赐1, 郁佳鑫1, 黄晓峰2, 陈盛2, 王育新1, 蒲玉梅1*   

  1. 1.南京大学医学院附属口腔医院 南京市口腔医院口腔颌面外科 江苏 南京 210008;
    2.南京大学医学院附属口腔医院 南京市口腔医院病理科 江苏 南京 210008
  • 收稿日期:2023-05-15 出版日期:2023-10-28 发布日期:2023-10-25
  • 通讯作者: *蒲玉梅,E-mail:puyumei1981@126.com
  • 作者简介:吴天赐(1997~ ),男,安徽人,本科,住院医师,研究方向:口腔颌面外科学。
  • 基金资助:
    南京大学医学院附属口腔医院3456骨干人才资助项目(编号:0222C101),江苏省重点研发计划项目(社会发展)BE2021609

Preliminary Study on Deep Learning Picture Classification Model for Identification and Classification of Invasion Pattern of Oral Squamous Cell Carcinoma

WU Tianci1, YU Jiaxin1, HUANG Xiaofeng2, CHEN Sheng2, WANG Yuxin1, PU Yumei1*   

  1. 1. Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China;
    2. Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
  • Received:2023-05-15 Online:2023-10-28 Published:2023-10-25

摘要: 目的: 探究深度学习网络模型(ResNet-18)用于判定口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)最差浸润方式(worst pattern of invasion,WPOI)的可行性及效果。方法: 应用 ResNet-18模型对收集的491张OSCC患者数字化病理切片进行研究,训练其识别并区分非肿瘤区域、WPOI 1~3级、WPOI 4~5级,利用分类准确率对模型进行评估。结果: ResNet-18神经网络可以有效区分 OSCC非肿瘤区域、WPOI 1~3级、WPOI 4~5级,其准确率可达99.5%。结论: 深度学习网络模型ResNet-18可以有效区分 OSCC非肿瘤区域、WPOI 1~3级、WPOI 4~5级,辅助医师提高诊断速度。

关键词: 口腔鳞状细胞癌, 病理, 深度学习, 残差神经网络, 最差浸润方式

Abstract: Objective: To explore the feasibility and effect of the deep learning network model (ResNet-18) to determine the worst infiltration mode (worst pattern of invasion, WPOI) of oral squamous cell carcinoma (oral squamous cell carcinoma, OSCC). Methods: The 491 digital pathological sections collected by ResNet-18 model were trained to identify and distinguish non-tumor areas, WPOI 1-3 and WPOI 4-5, and the model was evaluated using the classification accuracy. Results: ResNet-18 neural network can effectively distinguish non-tumor areas of OSCC, WPOI 1-3 and WPOI 4-5, with an accuracy of 99.5%. Conclusion: The deep learning network model ResNet-18 can effectively distinguish the non-tumor areas of OSCC, WPOI 1-3, and WPOI 4-5, and assist physicians to improve the diagnosis speed.

Key words: oral squamous cell carcinoma, pathology, deep learning, ResNet, worst pattern of invasion