[1] Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J]. CA Cancer J Clin, 2021, 71(3):209-249. [2] 陈新,徐文华,周健,等.口腔鳞状细胞癌现状[J].口腔医学,2017,37(5):462-465. [3] Vats R, Rai R, Kumar M. Detecting oral cancer: The potential of artificial intelligence [J]. Curr Med Imaging, 2022, 18(9):919-923. [4] Malkani N, Kazmi S, Rashid MU. Epidemiological assessment of oral cancer burden in Pakistan [J]. Cancer Invest, 2021, 39(10):842-853. [5] Lakhera KK, Nama Y, Maan P, et al. Worst pattern of invasion as a predictor of nodal metastasis in early-stage oral squamous cell carcinoma [J]. Indian J Surg Oncol, 2023, 14(1):160-168. [6] Mishra A, Das A, Dhal I, et al. Worst pattern of invasion in oral squamous cell carcinoma is an independent prognostic factor [J]. J Oral Biol Craniofac Res, 2022, 12(6):771-776. [7] Pu Y, Ding L, Wang Y, et al. Biopsy pattern of invasion type to determine the surgical approach in early-stage oral squamous cell carcinoma [J]. Virchows Arch, 2021, 479(1):109-119. [8] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016:770-778. [9] Warin K, Limprasert W, Suebnukarn S, et al. Performance of deep convolutional neural network for classification and detection of oral potentially malignant disorders in photographic images [J]. Int J Oral Maxillofac Surg, 2022, 51(5):699-704. [10] Panigrahi S, Bhuyan R, Kumar K, et al. Multistage classification of oral histopathological images using improved residual network [J]. Math Biosci Eng, 2022, 19(2):1909-1925. [11] Yang SY, Li SH, Liu JL, et al. Histopathology-based diagnosis of oral squamous cell carcinoma using deep learning [J]. J Dent Res, 2022, 101(11):1321-1327. [12] Mishra A, Das A, Dhal I, et al. Worst pattern of invasion in oral squamous cell carcinoma is an independent prognostic factor [J]. J Oral Biol Craniofac Res, 2022, 12(6):771-776. [13] LeCun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521(7553):436-444. [14] Ahn Y, Hwang JJ, Jung YH, et al. Automated mesiodens classification system using deep learning on panoramic radiographs of children [J]. Diagnostics (Basel), 2021, 11(8):1477. [15] Kamat M, Rai BD, Puranik RS, et al. A comprehensive review of surgical margin in oral squamous cell carcinoma highlighting the significance of tumor-free surgical margins [J]. J Cancer Res Ther, 2019, 15(3):449-454. |